• A microfluidic scheme is designed for energy efficient cooling of electronic chips • The cooling scheme consists in an array of microfluidic cells • Non-uniform and time dependent heat load scenarios are applied • The distribution heat extraction capacity self-adapts to the heat load scenarios • Low chip temperature non-uniformities and pumping power are achieved
Abstract. Temperature non uniformities of the CPV receivers lead to mismatch losses. In order to deal with this issue, a cooling device, formed by a matrix of microfluidic cells with individually variable coolant flow rate, has been developed. This device tailors the distribution of the heat extraction capacity over the CPV receiver to the local cooling needs in order to reduce the temperature non uniformities with respect to microchannel devices when submitted to uniform or non-uniform illumination profiles. At equal average temperature of the CPV receiver, power generation applying the matrix of microfluidic cells with individually variable coolant flow rate is 9.7% higher than the one with conventional microchannel technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.