We study compact, countably compact, pseudocompact, and functionally bounded sets in extensions of topological groups. A property P is said to be a three space property if, for every topological group G and a closed invariant subgroup N of G, the fact that both groups N and G/N have P implies that G also has P. It is shown that if all compact (countably compact) subsets of the groups N and G/N are metrizable, then G has the same property. However, the result cannot be extended to pseudocompact subsets, a counterexample exists under p = c. Another example shows that extensions of groups do not preserve the classes of realcompact, Dieudonné complete and μ-spaces: one can find a pseudocompact, non-compact Abelian topological group G and an infinite, closed, realcompact subgroup N of G such that G/N is compact and all functionally bounded subsets of N are finite. Several examples given in the article destroy a number of tempting conjectures about extensions of topological groups. (M. Bruguera), mich@xanum.uam.mx (M. Tkachenko).
a b s t r a c tWe present a wide class of reflexive, precompact, non-compact, Abelian topological groups G determined by three requirements. They must have the Baire property, satisfy the open refinement condition, and contain no infinite compact subsets. This combination of properties guarantees that all compact subsets of the dual group G ∧ are finite. We also show that many (non-reflexive) precompact Abelian groups are quotients of reflexive precompact Abelian groups. This includes all precompact almost metrizable groups with the Baire property and their products. Finally, given a compact Abelian group G of weight ≥ 2 ω , we find proper dense subgroups H 1 and H 2 of G such that H 1 is reflexive and pseudocompact, while H 2 is non-reflexive and almost metrizable.
Leaning on a remarkable paper of Pryce, the paper studies two independent classes of topological Abelian groups which are strictly angelic when endowed with their Bohr topology. Some extensions are given of the Eberlein-Šmulyan theorem for the class of topological Abelian groups, and finally, for a large subclass of the latter, Bohr angelicity is related to the Schur property.
It is natural to extend the Grothendieck theorem on completeness, valid for locally convex topological vector spaces, to Abelian topological groups. The adequate framework to do it seems to be the class of locally quasi-convex groups. However, in this paper we present examples of metrizable locally quasi-convex groups for which the analogue to the Grothendieck theorem does not hold. By means of the continuous convergence structure on the dual of a topological group, we also state some weaker forms of the Grothendieck theorem valid for the class of locally quasi-convex groups. Finally, we prove that for the smaller class of nuclear groups, BB-reflexivity is equivalent to completeness.
We prove that in the character group of an abelian topological group, the topology associated (in a standard way) to the continuous convergence structure is the finest of all those which induce the topology of simple convergence on the corresponding equicontinuous subsets. If the starting group is furthermore metrizable (or even almost metrizable), we obtain that such a topology coincides with the compact-open topology. This result constitutes a generalization of the theorem of Banach-Dieudonne, which is well known in the theory of locally convex spaces.We also characterize completeness, in the class of locally quasi-convex metrizable groups, by means of a property which we have called the quasi-convex compactness property, or briefly qcp (Section 3).2000 Mathematics subject classification: primary 22A05; secondary 46A04, 46A19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.