CD6 is a lymphocyte receptor that belongs to the scavenger receptor cysteine-rich superfamily. Because some members of the scavenger receptor cysteine-rich superfamily act as pattern recognition receptors for microbial components, we studied whether CD6 shares this function. We produced a recombinant form of the ectodomain of CD6 (rsCD6), which was indistinguishable (in apparent molecular mass, antibody reactivity, and cell binding properties) from a circulating form of CD6 affinity-purified from human serum. rsCD6 bound to and aggregated several Gram-positive and -negative bacterial strains through the recognition of lipoteichoic acid and LPS, respectively. The K d of the LPS-rsCD6 interaction was 2.69 ؎ 0.32 ؋ 10 ؊8 M, which is similar to that reported for the LPS-CD14 interaction. Further experiments showed that membrane CD6 also retains the LPS-binding ability, and it results in activation of the MAPK signaling cascade. In vivo experiments demonstrated that i.p. administration of rsCD6 before lethal LPS challenge significantly improved mice survival, and this was concomitant with reduced serum levels of the proinflammatory cytokines TNF-␣, IL6, and IL-1. In conclusion, our results illustrate the unprecedented bacterial binding properties of rsCD6 and support its therapeutic potential for the intervention of septic shock syndrome or other inflammatory diseases of infectious origin.bacterial cell component ͉ innate immunity ͉ lymphocyte surface receptor
CD6 is a cell surface receptor primarily expressed on immature thymocytes and mature T and B1a lymphocytes. Through its binding to activated leukocyte cell adhesion molecule (ALCAM/CD166), CD6 is considered to play an important role in lymphocyte development and activation. Accordingly, CD6 associates with the TCR/CD3 complex and colocalizes with it at the center of the mature immunological synapse on T lymphocytes. Moreover, the CD6-ALCAM interaction has been shown to be critical for proper immunological synapse maturation and T cell proliferative responses. However, the precise biological effects of CD6 ligation and its signaling pathway are still not well understood. The present study shows that CD6 ligation with three different specific mAbs (161.8, SPV-L14.2, and MAE1-C10) induces time- and dose-dependent activation of ERK1/2 on normal and leukemic human T cells. This effect was also observed upon CD6 ligation with a chimerical ALCAM protein (ALCAM-Fc). The C-terminal cytoplasmic region of CD6, as well as Src tyrosine kinases, was critical for CD6-induced ERK1/2 activation. Synergistic effects were observed upon coligation of the TCR/CD3 complex with CD6. The ligation of CD6 induced the transcriptional activation of reporter genes under the control of the c-Fos serum responsive element and AP-1. Accordingly, CD6-mediated activation of p38 and JNK was also observed. These findings indicate that the CD6-ALCAM interaction results in activation of the three MAPK cascades, likely influencing the dynamic balance that determines whether resting or activated lymphocytes survive or undergo apoptosis.
The mannose-binding lectin (MBL) pathway of complement system is activated when carbohydrate-bound MBL forms complexes with different serine proteases (MASP-1, MASP-2 and MASP-3), among which MASP-2 has a predominant functional role. Polymorphisms impairing the quantity and/or the functional activity of proteins encoded by the MBL2 and MASP2 genes have been reported in all human populations showing different allelic frequency and distribution. This likely reflects the existence of environmental influences on MBL2 and MASP2 genetic evolution. Herewith, we conducted a study in a children population from Mozambique to analyse the genetic diversity of sequences corresponding to the promoter and collagen-like region (exon 1) of MBL2 and to the CUB-1 and epidermal growth factor domain (exon 3) of MASP2, which are critical regions for the formation of functional MBL/MASP-2 complexes. Our results show a high prevalence of MBL-intermediate/low genotypes (43.5%); the description of new alleles and a high level of sequence polymorphism at both MBL2 and MASP2, with no statistical evidence for positive or balancing selection. Furthermore, Biacore analyses performed to explore the functional relevance of the MASP2 variants found [T73M (2.9%), R84Q (12.7%) and P111L (25.4%)] were compared with those of two previously reported variants (R103C and D105G). None of the analysed MASP2 variants, with the exception of D105G, interfered with interactions with either MBL or ficolins (H and L).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.