Two types of VEGFR-1 receptors have been characterized: a full-length transmembrane receptor and a truncated extracellular soluble isoform (sVEGFR-1). We report here the characterization, in normal and cancer cells, of a new family of intracellular isoforms of VEGFR-1 resulting from alternative initiation of transcription in intronic sequences of the gene. While the classical isoforms of VEGFR-1 were barely detectable in MDA-MB-231 breast cancer cells, one of the intracellular isoforms transcribed from intron 21 (i(21)VEGFR-1) was the main isoform expressed in these cells. The new transcript encodes for a protein that contains only the phosphotransferase domain and the carboxyterminal tail of VEGFR-1. Treatment of MDA-MB-231 cells with siRNA specific for the tyrosine domain of VEGFR-1 suppressed the expression of i(21)VEGFR-1, downregulated phosphorylation of Src at tyrosine 418, and reduced markedly the invasion capacity of these cells in vitro. Accordingly, overexpression of transfected i(21)VEGFR-1 in MDA-MB-231 cells upregulated the active form of Src and increased invasiveness of MDA-MB-231 cells. The expression of i(21)VEGFR-1 in MDA-MB-231 cells was inhibited by retinoic acid. Both, activation of Src and downregulation by retinoic acid, have been reported in other intracellular members of the Fms/Kit/PDGFR family of tyrosine kinases, particularly in the intracellular isoform of c-kit, analogous structurally to i(21)VEGFR-1 and frequently expressed in cancer cells.
We have previously reported that the major isoform of Flt1/VEGFR-1 expressed in MDA-MB-231 breast cancer cells was a truncated intracellular isoform transcribed from intron 21 (i21 Flt1). This isoform upregulated the active form of Src and increased breast cancer cell invasiveness. Since expression of the transmembrane and soluble Flt1 isoforms of HUVEC is activated by Notch signaling, we wondered whether the expression of the intracellular isoform i21 Flt1 was also dependent on Notch activation. We report here that the expression of i21 Flt1 in HUVEC and MDA-MB-231 cells is downregulated by the γ-secretase inhibitor DAPT. In addition, treatment of MDA-MB-231 cells with siRNA specific for Notch-1 and Notch-3 downregulates the expression of i21 Flt1. In agreement with these findings, HUVEC and MDA-MB-231 breast cancer cells, cultured on dishes coated with recombinant human Dll4 extracellular domain, express higher levels of i21 Flt1. In cancer cells, Flt1 is a target of the micro RNA family miR-200. In MDA-MB-231 breast cancer cells, the truncated intracellular isoform i21 Flt1 is also negatively regulated by miR-200c. Retinoic acid interferes i21 Flt1 expression by downregulating Notch-3 and upregulating miR-200 expression. Treatment of MDA-MB-231 breast cancer cells with both a γ-secretase inhibitor and retinoic acid suppresses the expression of i21 Flt1, providing a new mechanism to explain the effectiveness of this therapeutic approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.