Most Gram-negative bacteria are susceptible to polymyxin B (PxB), and development of resistance to this cationic lipopeptide is very rare. PxB mechanism of action involves interaction with both the outer membrane (OM) and the inner membrane (IM) of bacteria. For the design of new antibiotics based on the structure of PxB and with improved therapeutic indexes, it is essential to establish the key features of PxB that are important for activity. We have used an approach based on mimicking the outer layers of the OM and the IM of Gram-negative bacteria using monolayers of lipopolysaccharide (LPS) or anionic 1-palmitoyl-2-oleoylglycero-sn-3-phosphoglycerol (POPG), respectively, and using a combination of penetration assay, analysis of pressure/area curves, and Brewster angle microscopy to monitor surface morphology changes. Synthetic analogue sp-B maintains the basic structural characteristics of the natural compound and interacts with the OM and the IM in a similar way. Analogue sp-C, with a mutation of the sequence [d-Phe6-Leu7] into [d-Phe6-Dab7], shows that this hydrophobic domain is involved in LPS binding. The significant role of the positive charges is demonstrated with sp-Dap analogue, where l-alpha,gamma-diaminobutyric acid residues Dab1 and Dab8 are replaced by l-alpha,gamma-diaminopropionic acid (Dap), resulting in lower degrees of insertion in both LPS and PG monolayers. The importance of the N-terminal acyl chain is demonstrated with polymyxin B nonapeptide (PxB-np). PxB-np shows lower affinity for LPS compared to PxB, sp-B, or sp-C, but it does not insert into PG monolayers, although it binds superficially to the anionic film. Since PxB microbial killing appears to be mediated by osmotic instability due to OM-IM phospholipid exchange, the ability of the different peptides to induce membrane-membrane lipid exchange has been studied by use of phospholipid unilamellar vesicles. Results indicate that cationic amphipathicity determines peptide activity.
Ocular inflammation is one of the most prevalent diseases in ophthalmology, which can affect various parts of the eye or the surrounding tissues. Non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, are commonly used to treat ocular inflammation in the form of eye-drops. However, their bioavailability in ocular tissues is very low (less than 5%). Therefore, drug delivery systems such as biodegradable polymeric PLGA nanoparticles constitute a suitable alternative to topical eye administration, as they can improve ocular bioavailability and simultaneously reduce drug induced side effects. Moreover, their prolonged drug release can enhance patient treatment adherence as they require fewer administrations. Therefore, several formulations of PLGA based nanoparticles encapsulating dexibuprofen (active enantiomer of Ibuprofen) were prepared using the solvent displacement method employing different surfactants. The formulations have been characterized and their interactions with a customized lipid corneal membrane model were studied. Ex vivo permeation through ocular tissues and in vivo anti-inflammatory efficacy have also been studied.
The implementation of a care bundle to prevent VARI in children had a different impact on VAP and VAT, diminishing VAP rates and delaying VAT onset, resulting in reduced healthcare resource use. Tracheostomized children were at increased risk of VARI, but preventive measures had a greater impact on them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.