Rational redesign of the binding pocket of Cellular Retinoic Acid Binding Protein II (CRABPII) has provided a mutant that can bind retinal as a protonated Schiff base, mimicking the binding observed in rhodopsin. The reengineering was accomplished through a series of choreographed manipulations to ultimately orient the reactive species (the epsilon-amino group of Lys132 and the carbonyl of retinal) in the proper geometry for imine formation. The guiding principle was to achieve the appropriate Bürgi-Dunitz trajectory for the reaction to ensue. Through crystallographic analysis of protein mutants incapable of forming the requisite Schiff base, a highly ordered water molecule was identified as a key culprit in orienting retinal in a nonconstructive manner. Removal of the ordered water, along with placing reinforcing mutations to favor the desired orientation of retinal, led to a triple mutant CRABPII protein capable of nanomolar binding of retinal as a protonated Schiff base. The high-resolution crystal structure of all-trans-retinal bound to the CRABPII triple mutant (1.2 A resolution) unequivocally illustrates the imine formed between retinal and the protein.
Although eye color is usually modeled as a simple, Mendelian trait, further research and observation has indicated that eye color does not follow the classical paths of inheritance. Eye color phenotypes demonstrate both epistasis and incomplete dominance. Although there are about 16 different genes responsible for eye color, it is mostly attributed to two adjacent genes on chromosome 15, hect domain and RCC1-like domain-containing protein 2 (HERC2) and ocular albinism (that is, oculocutaneous albinism II (OCA2)). An intron in HERC2 contains the promoter region for OCA2, affecting its expression. Therefore, singlenucleotide polymorphisms in either of these two genes have a large role in the eye color of an individual. Furthermore, with all genetic expression, aberration also occurs. Some individuals may express two phenotypes-one in each eye-or a complete lack of pigmentation, ocular albinism. In addition, the evolutionary and population roles of the different expressions are significant.
Due to the difficulties in handling and manipulating membrane-bound proteins, such as rhodopsin, and the lack of crystallographic information on the cone opsins, we have opted to engineer a protein mimic of the transmembrane G-protein coupled receptor. Human cellular retinoic acid binding protein (CRABPII), a well studied and characterized protein, has been reengineered into a protein that now will bind retinal as a protonated Schiff base with high binding affinity (Kd = 2 nM) mimicking that of rhodopsin.
Green tea is characterized by the presence of an abundance of polyphenolic compounds, also known as catechins, including epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (EGC) and epigallocatechin gallate (EGCG). In addition to being a popular beverage, tea consumption has been suggested as a mean of chemoprevention. However, its mode of action is unclear. It was discovered that tea catechins can react with cytochrome c. When oxidized cytochrome c was mixed with catechins commonly found in green tea under non-steady-state conditions, a reduction of cytochrome c was observed. The reaction rate of the catechins was dependent on the pH and the nature of the catechin. The pseudo-first order rate constant obtained increased in the order of EC < ECG < EGC < EGCG, which is consistent with previously reported superoxide reduction activities and Cu2+ reduction activities of tea catechins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.