We present deep Gemini Multi‐Object Spectrograph‐South optical broad‐band images for a complete sample of 20 Sloan Digital Sky Survey selected type II quasars taken from Zakamska et al., with redshifts in the range 0.3 < z < 0.41 and [O iii]λ5007 emission‐line luminosities L[O iii ]>108.5L. The images were taken with the aim of investigating the interaction status of the quasar host galaxies, in order to determine the significance of galaxy interactions in triggering nuclear activity. We find that 15 of our sample of 20 (75 per cent) show evidence for interaction in the form of tails, shells, fans, irregular features, amorphous haloes and double nuclei. The median surface brightness of the features is trueμ̃r corr =23.4magarcsec−2 and the range is Δμr corr ≃[20.9,24.7]magarcsec−2. We find a similar rate of interaction signatures in the type II quasars as in a comparison sample of quiescent early‐type galaxies at similar redshift (67 per cent) taken from Ramos Almeida et al. (RA11). However the surface brightness of the detected features is up to 2 mag brighter for the type II quasars than for the quiescent early types, which have surface brightnesses in the range Δμr corr ≃[22.1,26.1]magarcsec−2 and a median surface brightness trueμ̃r corr =24.3magarcsec−2. Despite the relatively small sample size, this may indicate that the mergers witnessed in the comparison sample galaxies could have different progenitors, or we may be viewing the interactions at different stages. We also compare our results with those of Ramos Almeida et al. (RA12) who made a similar analysis using a complete sample of radio‐loud active galactic nuclei (AGN). They find a higher rate of interaction signatures in the radio‐loud AGN (95 per cent) than the type II quasars, but a very similar range of surface brightnesses for the morphological features Δμr corr ≃[20.9,24.8]magarcsec−2, possibly indicating a similarity in the types of triggering interactions. The wide range of features detected in the type II quasar sample suggests that AGN activity can be triggered before, during or after the coalescence of the black holes, with six of the 20 objects (30 per cent) having double nuclei. Overall, the results presented here are consistent with the idea that galaxy interaction plays an important role in the triggering of quasar activity. We also use time‐scale arguments to show that it is unlikely that most radio‐quiet quasars cycle through a radio‐loud phase as part of a single quasar triggering event.
We have identified ionized outflows in the narrow line region of all but one SDSS type 2 quasars (QSO2) at z 0.1 (20/21, detection rate 95%), implying that this is a ubiquitous phenomenon in this object class also at the lowest z. The outflowing gas has high densities (n e 1000 cm −3 ) and covers a region the size of a few kpc. This implies ionized outflow masses M outf ∼(0.3-2.4)×10 6 M ⊙ and mass outflow rates Ṁ
We study the multiphase feedback processes in the central ∼3 kpc of the barred Seyfert 2 galaxy NGC 5643. We used observations of the cold molecular gas (ALMA CO(2−1) transition) and ionized gas (MUSE IFU optical emission lines). We studied different regions along the outflow zone, which extends out to ∼2.3 kpc in the same direction (east-west) as the radio jet, as well as nuclear and circumnuclear regions in the host galaxy disk. The CO(2−1) line profiles of regions in the outflow and spiral arms show two or more different velocity components: one associated with the host galaxy rotation, and the others with out- or inflowing material. In the outflow region, the [O III]λ5007 Å emission lines have two or more components: the narrow component traces rotation of the gas in the disk, and the others are related to the ionized outflow. The deprojected outflowing velocities of the cold molecular gas (median Vcentral ∼ 189 km s−1) are generally lower than those of the outflowing ionized gas, which reach deprojected velocities of up to 750 km s−1 close to the active galactic nucleus (AGN), and their spatial profiles follow those of the ionized phase. This suggests that the outflowing molecular gas in the galaxy disk is being entrained by the AGN wind. We derive molecular and ionized outflow masses of ∼5.2 × 107 M⊙ (αCOGalactic) and 8.5 × 104 M⊙ and molecular and ionized outflow mass rates of ∼51 M⊙ yr−1 (αCOGalactic) and 0.14 M⊙ yr−1, respectively. This means that the molecular phase dominates the outflow mass and outflow mass rate, while the kinetic power and momentum of the outflow are similar in both phases. However, the wind momentum loads (Ṗout/ṖAGN) for the molecular and ionized outflow phases are ∼27−5 (αCOGalactic and αCOULIRGs) and < 1, which suggests that the molecular phase is not momentum conserving, but the ionized phase most certainly is. The molecular gas content (Meast ∼ 1.5 × 107 M⊙; αCOGalactic) of the eastern spiral arm is approximately 50−70% of the content of the western one. We interpret this as destruction or clearing of the molecular gas produced by the AGN wind impacting in the eastern side of the host galaxy (negative feedback process). The increase in molecular phase momentum implies that part of the kinetic energy from the AGN wind is transmitted to the molecular outflow. This suggests that in Seyfert-like AGN such as NGC 5643, the radiative or quasar and the kinetic or radio AGN feedback modes coexist and may shape the host galaxies even at kiloparsec scales through both positive and (mild) negative feedback.
Context. Core extremely red quasars (core ERQ) have been proposed to represent an intermediate evolutionary phase in which a heavily obscured quasar blows out the circumnuclear interstellar medium with very energetic outflows before it becomes an optical quasar. Aims. We investigate whether the properties of core ERQ fit the AGN orientation-based unification scenario. Methods. We revised the general UV and optical emission line properties of core ERQ in the context of the orientation-based scenario. We used diagnostic diagrams based on UV emission line ratios and UV-to-optical line kinematic information to compare the physical and kinematic gas properties of core ERQ with those of other luminous narrow- and broad-line AGN. In particular, we provide a revised comparison of the [OIII] kinematics in 21 core ERQ (20 from Perrotta et al. 2019, MNRAS, 488, 4126 and SDSS J171420.38+414815.7, based on GTC EMIR near-infrared spectroscopy) with other samples of quasars with matching luminosity with the aim of evaluating whether core ERQ host the most extreme [OIII] outflows. Results. The UV line ratios suggest that the physical properties (e.g., density and metallicity) of the ionised gas in core ERQ are similar to those observed in the broad-line region of blue nitrogen-loud quasars. The [OIII] outflow velocities of core ERQ are on average consistent with those of very luminous blue type 1 quasars, although extreme outflows are much more frequent in core ERQ. These similarities can be explained in the context of the AGN unification model under the assumption that core ERQ are viewed with an intermediate orientation between type 2 (edge-on) and type 1 (face-on) quasars. Conclusions. We propose that core ERQ are very luminous but otherwise normal quasars viewed at an intermediate orientation. This orientation allows a direct view of the outer part of the large broad-line region from which core ERQ UV line emission originates; the extreme [OIII] outflow velocities are instead a consequence of the very high luminosity of core ERQ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.