Recently, many researches on human mobility are aiming to suggest the personal customized solution in the diverse field, usually by academia and industry. Combined with deep learning methods, it is able to predict and generate novel routes of objects from the mobility data including the given past trends. In this work, Generative Adversarial Network (GAN) model is introduced for creating individual mobility routes based on sets of accumulated personal mobility data. The mobility data had been collected by use of geopositioning system and personal mobile devices. GAN has Discriminator and Generator which are composed of neural networks, and can train and extract geopositionig information. A sequence of longitude and latitude can be geographically mapped, and matrices including all these information can be handled by GAN. The GAN-based model successfully handled individual mobility routes in this way. Consequently, our model can generate and suggest unexplored routes from the existing sets of personal geolocation data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.