An enzymatic system for poly g-glutamate (PGA) synthesis in Bacillus subtilis, the PgsBCA system, was investigated. The gene-disruption experiment showed that the enzymatic system was the sole machinery of PGA synthesis in B. subtilis. We succeeded in achieving the enzymatic synthesis of elongated PGAs with the cell membrane of the Escherichia coli clone producing PgsBCA in the presence of ATP and D-glutamate. The enzyme preparation solubilized from the membrane with 8 mM Chaps catalyzed ADPforming ATP hydrolysis only in the presence of glutamate; the D-enantiomer was the best cosubstrate, followed by the L-enantiomer. Each component of the system, PgsB, PgsC, and PgsA, was translated in vitro and the glutamatedependent ATPase reaction was kinetically analyzed. The PGA synthetase complex, PgsBCA, was suggested to be an atypical amide ligase.
The endemicity of highly pathogenic avian influenza (HPAI) A(H5N1) viruses in Asia has led to the generation of reassortant H5 strains with novel gene constellations. A newly emerged HPAI A(H5N8) virus caused poultry outbreaks in the Republic of Korea in 2014. Because newly emerging high-pathogenicity H5 viruses continue to pose public health risks, it is imperative that their pathobiological properties be examined. Here, we characterized A/mallard duck/Korea/W452/2014 (MDk/W452(H5N8)), a representative virus, and evaluated its pathogenic and pandemic potential in various animal models. We found that MDk/W452(H5N8), which originated from the reassortment of wild bird viruses harbored by migratory waterfowl in eastern China, replicated systemically and was lethal in chickens, but appeared to be attenuated, albeit efficiently transmitted, in ducks. Despite predominant attachment to avian-like virus receptors, MDk/W452(H5N8) also exhibited detectable human virus-like receptor binding and replicated in human respiratory tract tissues. In mice, MDk/W452(H5N8) was moderately pathogenic and had limited tissue tropism relative to previous HPAI A(H5N1) viruses. It also induced moderate nasal wash titers in inoculated ferrets; additionally, it was recovered in extrapulmonary tissues and one of three direct-contact ferrets seroconverted without shedding. Moreover, domesticated cats appeared to be more susceptible than dogs to virus infection. With their potential to become established in ducks, continued circulation of A(H5N8) viruses could alter the genetic evolution of pre-existing avian poultry strains. Overall, detailed virological investigation remains a necessity given the capacity of H5 viruses to evolve to cause human illness with few changes in the viral genome.
A bacterium with high poly-gamma-glutamate (PGA) productivity was isolated from the traditional Korean seasoning, Chung-Kook-Jang. This bacterium could be classified as a Bacillus subtilis, but sporulation in culture was infrequent in the absence of Mn2+. It was judged to be a variety of B. subtilis and designated B. subtilis (chungkookjang). L-Glutamate significantly induced PGA production, and highly elongated PGAs were synthesized. The volumetric yield reached 13.5 mg ml(-1) in the presence of 2% L-glutamate. The D-glutamate content was over 50% in every PGA produced under the conditions used. During PGA production, glutamate racemase activity was found in the cells, suggesting that the enzyme is involved in the D-glutamate supply. Molecular sizes of PGAs were changed by the salt concentration in the medium; PGAs with comparatively low molecular masses were produced in culture media containing high concentrations of NaCl. B. subtilis (chungkookjang) harbors no plasmid and is the first B. subtilis strain reported with both naturally high PGA productivity and high genetic competence.
We analyzed the in vivo tumor regression activity of high molecular mass poly-γ-glutamate (γ-PGA) from Bacillus subtilis sups. chungkookjang. C57BL/6 mice were orally administered 10-, 100-, or 2000-kDa γ-PGA or β-glucan (positive control), and antitumor immunity was examined. Our results revealed higher levels of NK cell-mediated cytotoxicity and IFN-γ secretion in mice treated with higher molecular mass γ-PGA (2000 kDa) vs those treated with lower molecular mass γ-PGA (10 or 100 kDa) or β-glucan. We then examined the effect of oral administration of 10- or 2000-kDa γ-PGA on protection against B16 tumor challenge in C57BL/6 mice. Mice receiving high molecular mass γ-PGA (2000 kDa) showed significantly smaller tumor sizes following challenge with the MHC class I-down-regulated tumor cell lines, B16 and TC-1 P3 (A15), but not with TC-1 cells, which have normal MHC class I expression. Lastly, we found that γ-PGA-induced antitumor effect was decreased by in vivo depletion of NK cells using mAb PK136 or anti-asialo GM1 Ab, and that was completely blocked in NK cell-deficient B6 beige mice or IFN-γ knockout mice. Taken together, we demonstrated that oral administration of high molecular mass γ-PGA (2000 kDa) generated significant NK cell-mediated antitumor activity in mice bearing MHC class I-deficient tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.