The role of mechanical action on the washing process was studied. The experimental apparatus was designed to simulate each mechanical action such as the hydrodynamic flow action, the fabric flexing action, the abrasion action during washing process. The influence of mechanical action strongly depends on the property and attached state of each soil. The abrasion action was found as the most effective mechanical action for soil removal.
In a study of yam strength translation into woven fabric behavior, experiments were conducted to establish the effect of test gauge length on yarn properties. Yams produced on each of the three major spinning systems were tensile tested at varying gauge lengths. Yam strength data were fit to two-parameter Weibull distributions and corresponding shape and scale parameters were determined. Strength increased as gauge lengths decreased, a trend indicated by the weakest-link theory. At very short gauge lengths, however, the data deviated from prediction based on the weakest-link theory, thus suggesting a change in the yam failure mechanism, as one would expect when the gauge length approximates the staple length. More direct evidence of such a change is provided in SEM photomicrographs of tensile failures of long versus short gauge test specimens. Combined fiber slippage/pullout and breakage prevailed at longer gauges, whereas a greater extent of fiber breakage with less slippage occurred at shorter gauge lengths. The balance between fiber slippage and fiber breakage varied with yarn structure as produced on different spinning systems. Finally, tensile tests were con ducted on plain and twill weave fabrics woven from yams produced on the different spinning systems. The resultant fabric tenacities approximated corresponding yarn tenacities only for the shortest gauge lengths.
A micromechanical approach is proposed in this work to predict the initial tensile response under uniaxial loading of a bonded two-dimensional fibrous network consisting of two kinds of fibers. The probabilities and statistical distributions of the hybrid bonding points and free fiber lengths between the bonding points in the structure are first derived, and the deformations of both the fiber segment and the bonding area of a typical microelement of the network are analyzed and calculated. The analysis of an arbitrary microelement is then extended statistically to an intermediate level of the structure, the mesodomain, through which the macroscopic deformations of the structure are computed. Ultimately, the general expressions of elastic moduli and Poisson's ratios for a hybrid fibrous network are obtained. A parametric study examines the relationships between fiber mechanical and dimensional properties, fiber volume fractions of the two fiber types, fiber orientation distributions and the properties of the bonding areas, and the tensile behavior of the structure for an ideal planar fiber network.
This study is primarily concerned with the performance of double-braided ropes. widely used in marine applications. The mechanical properties of such ropes are ob tained by combining their structural features and the constitutive behavior of individual rope components. Emphasis in this study is on the tensile behavior of straight ropes as well as bent ropes, either an eye splice or in a continuous loop around a bollard- like pin. In the former case, precycling and water effects on the model predictions are discussed. For new small ropes, bending rigidity is negligible, so the bending effect is considered by modifying the geometry of the rope to allow for variation of helix periods and change of cross-sectional shapes from circular to elliptical ( flattened ) . For two extreme frictional conditions considered, i.e., infinite and zero friction, predictions of small nylon rope behavior agree well with experimental results for both simple tension and tension plus bending. There is less agreement for small PET ropes, par , ticularly in bending tests.
An image analysis processing method for the measurement of nanofiber diameter was developed. For the analysis, scanning electron microscopy (SEM) images of electrospun fiber were prepared and applied to the individual measurement of the fiber diameter by using the developed and the traditional manual methods. Both methods provided a similar fiber distribution. The fiber average diameters were similar but the variance of the new method was larger than that of the manual method. The average diameters from the two methods exhibited a linear relationship with a high coefficient. The developed method can be used as a practical tool to estimate the fiber diameter of the electrospun web.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.