Quantifying humidity has long been an unavoidable task in science, industry, and society. Recent developments of nanoscience and technology that deal with ultrasmall droplets have aroused interest in microscopic moisture. Utilization of nanomaterials has been emerging as a promising strategy to miniaturize hygrometers for high‐sensitive, ultrasmall‐area sensing. However, a lack of high‐precision, on‐demand position control of sensing nanomaterials makes it difficult to explore spatial distribution of humidity at the micro‐ and nanoscale. Here, a scanning probe hygrometry (SPH) is developed that enables not only micro/nanoresolution but also scalable spatial mapping of humidity distribution. The SPH is realized with an unprecedented scanning nanowire probe interferometer (NPI) that is produced by direct 3D nanoprinting of a moisture‐sensitive polymer on a tapered optical fiber. Notably, the interferometric response of the NPI probe in ultrasmall areas quantitatively depends on humidity, arising from its refractive index change and volumetric swelling. By scanning the NPI probe and reading out the interferometric signals, multiscale spatial mapping of humidity distribution with versatile scanning steps from ≈102 nm to a few mm is demonstrated. The NPI is expected to provide a new nanoscale metrology that can answer fundamental questions about evaporation‐related science and engineering.
Spatiotemporal pH monitoring of single living cells across rigid cell and organelle membranes has been challenging, despite its significance in understanding cellular heterogeneity. Here, we developed a mechanically robust yet tolerably thin nanowire waveguide that enables in situ monitoring of pH dynamics at desired cellular compartments via direct optical communication. By chemically labeling fluorescein at one end of a poly(vinylbenzyl azide) nanowire, we continuously monitored pH variations of different compartments inside a living cell, successfully observing organelle-exclusive pH homeostasis and stimuli-selective pH regulations. Importantly, it was demonstrated for the first time that, during the mammalian cell cycle, the nucleus displays pH homeostasis in interphase but a tidal pH curve in the mitotic phase, implying the existence of independent pH-regulating activities by the nuclear envelope. The rapid and accurate local pH-reporting capability of our nanowire waveguide would be highly valuable for investigating cellular behaviors under diverse biological situations in living cells.
Biopolymers are essential building blocks that constitute cells and tissues with well‐defined molecular structures and diverse biological functions. Their three‐dimensional (3D) complex architectures are used to analyze, control, and mimic various cells and their ensembles. However, the free‐form and high‐resolution structuring of various biopolymers remain challenging because their structural and rheological control depend critically on their polymeric types at the submicron scale. Here, direct 3D writing of intact biopolymers is demonstrated using a systemic combination of nanoscale confinement, evaporation, and solidification of a biopolymer‐containing solution. A femtoliter solution is confined in an ultra‐shallow liquid interface between a fine‐tuned nanopipette and a chosen substrate surface to achieve directional growth of biopolymer nanowires via solvent‐exclusive evaporation and concurrent solution supply. The evaporation‐dependent printing is biopolymer type‐independent, therefore, the 3D motor‐operated precise nanopipette positioning allows in situ printing of nucleic acids, polysaccharides, and proteins with submicron resolution. By controlling concentrations and molecular weights, several different biopolymers are reproducibly patterned with desired size and geometry, and their 3D architectures are biologically active in various solvents with no structural deformation. Notably, protein‐based nanowire patterns exhibit pin‐point localization of spatiotemporal biofunctions, including target recognition and catalytic peroxidation, indicating their application potential in organ‐on‐chips and micro‐tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.