Computational fluid dynamics (CFD) is an effective analysis method of personalized ventilation (PV) in indoor built environments. As an increasingly important supplement to experimental and theoretical methods, the quality of CFD simulations must be maintained through an adequately controlled numerical modeling process. CFD numerical data can explain PV performance in terms of inhaled air quality, occupants’ thermal comfort, and building energy savings. Therefore, this paper presents state-of-the-art CFD analyses of PV systems in indoor built environments. The results emphasize the importance of accurate thermal boundary conditions for computational thermal manikins (CTMs) to properly analyze the heat exchange between human body and the microenvironment, including both convective and radiative heat exchange. CFD modeling performance is examined in terms of effectiveness of computational grids, convergence criteria, and validation methods. Additionally, indices of PV performance are suggested as system-performance evaluation criteria. A specific utilization of realistic PV air supply diffuser configurations remains a challenging task for further study. Overall, the adaptable airflow characteristics of a PV air supply provide an opportunity to achieve better thermal comfort with lower energy use based on CFD numerical analyses.
With growing urbanization, it has become necessary to manage this growth smartly. Specifically, increased electrical energy consumption has become a rapid urbanization trend in China. A building model based on a neural network was proposed to overcome the difficulties of analytical modelling. However, increased amounts of data, repetitive computation, and training time become a limitation of this approach. A simplified model can be used instead of the full order model if the performance is acceptable. In order to select effective data, Mean Impact Value (MIV) has been applied to select meaningful data. To verify this neural network method, we used real electricity consumption data of a shopping mall in China as a case study. In this paper, a Bayesian Regularization Neural Network (BRNN) is utilized to avoid overfitting due to the small amount of data. With the simplified data set, the building model showed reasonable performance. The mean of Root Mean Square Error achieved is around 10% with respect to the actual consumption and the standard deviation is low, which reflects the model’s reliability. We also compare the results with our previous approach using the Levenberg–Marquardt back propagation (LM-BP) method. The main difference is the output reliability of the two methods. LM-BP shows higher error than BRNN due to overfitting. BRNN shows reliable prediction results when the simplified neural network model is applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.