In the era of 'Big Data' there is a pressing need for tools that provide human interpretable visualizations of emergent patterns in high-throughput high-dimensional data. Further, to enable insightful data exploration, such visualizations should faithfully capture and emphasize emergent structures and patterns without enforcing prior assumptions on the shape or form of the data. In this paper, we present PHATE (Potential of Heat-diffusion for Affinity-based Transition Embedding) -an unsupervised low-dimensional embedding for visualization of data that is aimed at solving these issues. Unlike previous methods that are commonly used for visualization, such as PCA and tSNE, PHATE is able to capture and highlight both local and global structure in the data. In particular, in addition to clustering patterns, PHATE also uncovers and emphasizes progression and transitions (when they exist) in the data, which are often missed in other visualization-capable methods. Such 24, 2017; patterns are especially important in biological data that contain, for example, single-cell phenotypes at different phases of differentiation, patients at different stages of disease progression, and gut microbial compositions that vary gradually between individuals, even of the same enterotype.International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/120378 doi: bioRxiv preprint first posted online Mar.The embedding provided by PHATE is based on a novel informational distance that captures long-range nonlinear relations in the data by computing energy potentials of dataadaptive diffusion processes. We demonstrate the effectiveness of the produced visualization in revealing insights on a wide variety of biomedical data, including single-cell RNA-sequencing, mass cytometry, gut microbiome sequencing, human SNP data, Hi-C data, as well as non-biomedical data, such as facebook network and facial image data. In order to validate the capability of PHATE to enable exploratory analysis, we generate a new dataset of 31,000 single-cells from a human embryoid body differentiation system. Here, PHATE provides a comprehensive picture of the differentiation process, while visualizing major and minor branching trajectories in the data. We validate that all known cell types are recapitulated in the PHATE embedding in proper organization. Furthermore, the global picture of the system offered by PHATE allows us to connect parts of the developmental progression and characterize novel regulators associated with developmental lineages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.