Cigarette smoke carcinogens such as benzo[a]pyrene are implicated in the development of lung cancer. The distribution of benzo[a]pyrene diol epoxide (BPDE) adducts along exons of the P53 gene in BPDE-treated HeLa cells and bronchial epithelial cells was mapped at nucleotide resolution. Strong and selective adduct formation occurred at guanine positions in codons 157, 248, and 273. These same positions are the major mutational hotspots in human lung cancers. Thus, targeted adduct formation rather than phenotypic selection appears to shape the P53 mutational spectrum in lung cancer. These results provide a direct etiological link between a defined chemical carcinogen and human cancer.
The tumor suppressor gene p53 is frequently mutated in cigarette smoke (CS)-related lung cancer. The p53 binding pattern of carcinogenic polycyclic aromatic hydrocarbons (PAHs) found in CS coincides with the p53 mutational pattern found in lung cancer, and PAHs have thus been considered to be major culprits for lung cancer. However, compared with other carcinogenic compounds, such as aldehydes, the amount of PAHs in CS is minute. Acrolein (Acr) is abundant in CS, and it can directly adduct DNA. Acr-DNA adducts, similar to PAH-DNA adducts, induce predominantly G-to-T transversions in human cells. These findings raise the question of whether Acr-DNA adducts are responsible for p53 mutations in CS-related lung cancer. To determine the role of Acr-DNA adducts in p53 mutagenesis in CS-related lung cancer we mapped the distribution of Acr-DNA adducts at the sequence level in the p53 gene of lung cells using the UvrABC incision method in combination with ligation-mediated PCR. We found that the Acr-DNA binding pattern is similar to the p53 mutational pattern in human lung cancer. Acr preferentially binds at CpG sites, and this enhancement of binding is due to cytosine methylation at these sequences. Furthermore, we found that Acr can greatly reduce the DNA repair capacity for damage induced by benzo[a]pyrene diol epoxide. Together these results suggest that Acr is a major etiological agent for CS-related lung cancer and that it contributes to lung carcinogenesis through two detrimental effects: DNA damage and inhibition of DNA repair.DNA damage
In the P53 tumor suppressor gene, a remarkably large number of somatic mutations are found at methylated CpG dinucleotides. We have previously mapped the distribution of (؎) anti-7,8␣-dihydroxy-9␣,10␣-epoxy-7,8,9,10-tetrahydrobenzo
Nucleotide excision repair is the major DNA repair mechanism in all species tested. This repair system is the sole mechanism for removing bulky adducts from DNA, but it repairs essentially all DNA lesions, and thus, in addition to its main function, it plays a back-up role for other repair systems. In both pro- and eukaryotes nucleotide excision is accomplished by a multisubunit ATP-dependent nuclease. The excision nuclease of prokaryotes incises the eighth phosphodiester bond 5' and the fourth or fifth phosphodiester bond 3' to the modified nucleotide and thus excises a 12-13-mer. The excision nuclease of eukaryotes incises the 22nd, 23rd, or 24th phosphodiester bond 5' and the fifth phosphodiester bond 3' to the lesion and thus removes the adduct in a 27-29-mer. A transcription repair coupling factor encoded by the mfd gene in Escherichia coli and the ERCC6 gene in humans directs the excision nuclease to RNA polymerase stalled at a lesion in the transcribed strand and thus ensures preferential repair of this strand compared to the nontranscribed strand.
Electronic-cigarettes (E-cigs) are marketed as a safe alternative to tobacco to deliver the stimulant nicotine, and their use is gaining in popularity, particularly among the younger population. We recently showed that mice exposed to short-term (12 wk) E-cig smoke (ECS) sustained extensive DNA damage in lungs, heart, and bladder mucosa and diminished DNA repair in lungs. Nicotine and its nitrosation product, nicotine-derived nitrosamine ketone, cause the same deleterious effects in human lung epithelial and bladder urothelial cells. These findings raise the possibility that ECS is a lung and bladder carcinogen in addition to nicotine. Given the fact that E-cig use has become popular in the past decade, epidemiological data on the relationship between ECS and human cancer may not be known for a decade to come. In this study, the carcinogenicity of ECS was tested in mice. We found that mice exposed to ECS for 54 wk developed lung adenocarcinomas (9 of 40 mice, 22.5%) and bladder urothelial hyperplasia (23 of 40 mice, 57.5%). These lesions were extremely rare in mice exposed to vehicle control or filtered air. Current observations that ECS induces lung adenocarcinomas and bladder urothelial hyperplasia, combined with our previous findings that ECS induces DNA damage in the lungs and bladder and inhibits DNA repair in lung tissues, implicate ECS as a lung and potential bladder carcinogen in mice. While it is well established that tobacco smoke poses a huge threat to human health, whether ECS poses any threat to humans is not yet known and warrants careful investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.