Cancer is frequently considered to be a disease of the cell cycle. As such, it is not surprising that the deregulation of the cell cycle is one of the most frequent alterations during tumor development. Cell cycle progression is a highlyordered and tightly-regulated process that involves multiple checkpoints that assess extracellular growth signals, cell size, and DNA integrity. Cyclin-dependent kinases (CDKs) and their cyclin partners are positive regulators or accelerators that induce cell cycle progression; whereas, cyclindependent kinase inhibitors (CKIs) that act as brakes to stop cell cycle progression in response to regulatory signals are important negative regulators. Cancer originates from the abnormal expression or activation of positive regulators and functional suppression of negative regulators. Therefore, understanding the molecular mechanisms of the deregulation of cell cycle progression in cancer can provide important insights into how normal cells become tumorigenic, as well as how new cancer treatment strategies can be designed.
We have previously reported that ursolic acid, a pentacyclic triterpene acid, inhibited the invasion of HT1080 human ®brosarcoma cells by reducing the expression of matrix metalloproteinase-9. Since the chemical structure of ursolic acid is very similar to that of dexamethasone, a synthetic glucocorticoid, we investigated whether ursolic acid acts through the glucocorticoid receptor. The expression of matrix metalloproteinase-9 is thought to be regulated similarly with matrix metalloproteinase-1 and matrix metalloproteinase-3 as containing common 2-O-tetradecanoylphorbol-acetate responsible region, where AP-1 proteins can bind. Dexamethasone has been studied to repress the 2-O-tetradecanoylphorbolacetate-induced expression of matrix metalloproteinase-1 and matrix metalloproteinase-3 through a glucocorticoid receptor-mediated manner. In Northern blot analysis, we found that ursolic acid reduced the expression of matrix metalloproteinase-1 and matrix metalloproteinase-3 induced by 2-O-tetradecanoylphorbol-acetate. Similarly, ursolic acid down-regulated 2-O-tetradecanoylphorbolacetate-induction of matrix metalloproteinase-9 gene in the same manner of dexamethasone. RU486, a potent glucocorticoid receptor antagonist, was used for identifying that ursolic acid-induced down-regulation of matrix metalloproteinase-9 expression is mediated by its binding to glucocorticoid receptor. The e ect of ursolic acid on the matrix metalloproteinase-9 expression was blocked by RU486, suggesting that ursolic acid acts via a glucocorticoid receptor in the regulation of matrix metalloproteinase-9. Western blot analysis and immunocytochemistry showed that ursolic acid increased glucocorticoid receptor fraction in the nucleus, although it decreased the synthesis of glucocorticoid receptor mRNA. In addition, ursolic acid did not decrease the expression of c-jun and DNAbinding activity of AP-1 to its cognate sequences. Taken together, we suggest that ursolic acid may induce the repression of matrix metalloproteinase-9 by stimulating the nuclear translocation of glucocorticoid receptor, and the translocated glucocorticoid receptor probably downmodulating the trans-activating function of AP-1 to 2-Otetradecanoylphorbol-acetate responsible element of matrix metalloproteinase-9 promoter region.
Backgroundβ-lapachone (β-lap) is a bioreductive agent that is activated by the two-electron reductase NAD(P)H quinone oxidoreductase 1 (NQO1). Although β-lap has been reported to induce apoptosis in various cancer types in an NQO1-dependent manner, the signaling pathways by which β-lap causes apoptosis are poorly understood.Methodology/Principal Findingsβ-lap-induced apoptosis and related molecular signaling pathways in NQO1-negative and NQO1-overexpressing MDA-MB-231 cells were investigated. Pharmacological inhibitors or siRNAs against factors involved in β-lap-induced apoptosis were used to clarify the roles played by such factors in β-lap-activated apoptotic signaling pathways. β-lap leads to clonogenic cell death and apoptosis in an NQO1- dependent manner. Treatment of NQO1-overexpressing MDA-MB-231 cells with β-lap causes rapid disruption of mitochondrial membrane potential, nuclear translocation of AIF and Endo G from mitochondria, and subsequent caspase-independent apoptotic cell death. siRNAs targeting AIF and Endo G effectively attenuate β-lap-induced clonogenic and apoptotic cell death. Moreover, β-lap induces cleavage of Bax, which accumulates in mitochondria, coinciding with the observed changes in mitochondria membrane potential. Pretreatment with Salubrinal (Sal), an endoplasmic reticulum (ER) stress inhibitor, efficiently attenuates JNK activation caused by β-lap, and subsequent mitochondria-mediated cell death. In addition, β-lap-induced generation and mitochondrial translocation of cleaved Bax are efficiently blocked by JNK inhibition.Conclusions/SignificanceOur results indicate that β-lap triggers induction of endoplasmic reticulum (ER) stress, thereby leading to JNK activation and mitochondria-mediated apoptosis. The signaling pathways that we revealed in this study may significantly contribute to an improvement of NQO1-directed tumor therapies.
NAD(P)H:quinone oxidoreductase (NQO1) has been reported to play an important role in cell death caused by beta-lapachone (beta-lap), 3,4-dihydro-22,2-dimethyl-2H-naphthol[1,22b]pyran-5,6-dione. This study investigated whether cisplatin (cis-diamminedichloroplatinum) sensitizes cancer cells to beta-lap by upregulating NQO1. The cytotoxicity of cisplatin and beta-lap alone or in combination against FSaII fibrosarcoma cells of C3H mice in vitro was determined with a clonogenic survival assay and assessment of gamma-H2AX foci formation, a hallmark of DNA double-strand breaks. The cellular sensitivity to beta-lap progressively increased during the 24 h after cisplatin treatment. The expression and enzymatic activity of NQO1 also increased during the 24 h after cisplatin treatment, and dicoumarol, an inhibitor of NQO1, was found to nullify the cisplatin-induced increase in beta-lap sensitivity. The role of NQO1 in the cell death caused by beta-lap alone or in combination with cisplatin was further elucidated using NQO1-positive and NQO1-negative MDA-MB-231 human breast cancer cells. Cisplatin increased the sensitivity of the NQO1-positive but not the NQO1-negative MDA-MB-231 cells to beta-lap treatment. Combined treatment with cisplatin and beta-lap suppressed the growth of FSaII tumors in the legs of C3H mice in a manner greater than additive. It is concluded that cisplatin markedly increases the sensitivity of cancer to beta-lap in vitro and in vivo by upregulating NQO1.
Histone deacetylase (HDAC) plays an important role in cancer onset and progression. Therefore, inhibition of HDAC offers potential as an effective cancer treatment regimen. CG200745, (E)-N(1)-(3-(dimethylamino)propyl)-N(8)-hydroxy-2-((naphthalene-1-loxy)methyl)oct-2-enediamide, is a novel HDAC inhibitor presently undergoing a phase I clinical trial. Enhancement of p53 acetylation by HDAC inhibitors induces cell cycle arrest, differentiation, and apoptosis in cancer cells. The purpose of the present study was to investigate the role of p53 acetylation in the cancer cell death caused by CG200745. CG200745-induced clonogenic cell death was 2-fold greater in RKO cells expressing wild-type p53 than in p53-deficient RC10.1 cells. CG200745 treatment was also cytotoxic to PC-3 human prostate cancer cells, which express wild-type p53. CG200745 increased acetylation of p53 lysine residues K320, K373, and K382. CG200745 induced the accumulation of p53, promoted p53-dependent transactivation, and enhanced the expression of MDM2 and p21(Waf1/Cip1) proteins, which are encoded by p53 target genes. An examination of CG200745 effects on p53 acetylation using cells transfected with various p53 mutants showed that cells expressing p53 K382R mutants were significantly resistant to CG200745-induced clonogenic cell death compared with wild-type p53 cells. Moreover, p53 transactivation in response to CG200745 was suppressed in all cells carrying mutant forms of p53, especially K382R. Taken together, these results suggest that acetylation of p53 at K382 plays an important role in CG200745-induced p53 transactivation and clonogenic cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.