The purpose of this paper is to present a framework to analyze the interaction between an actively controlled magnetic levitation vehicle and a guideway structure under gusty wind. The equation of motion is presented for a 30-dof maglev vehicle model consisting of one cabin and four bogies. In addition, a lateral electromagnetic suspension (EMS) system is introduced to improve the running safety and ride quality of the maglev vehicle subjected to turbulent crosswind. By using the developed simulation tools, the effects of various parameters on the dynamic response of the vehicle and guideway are investigated in the case of the UTM maglev vehicle running on a simply supported guideway and cable-stayed guideway. The simulation results show that the independent lateral EMS and associated control scheme are definitely helpful in improving the running safety and ride quality of the vehicle under gusty wind. In the case of the cable-stayed guideway, at low wind speed, vehicle speed is the dominant factor influencing the dynamic responses of the maglev vehicle and the guideway, but at wind speed over 10 m/s, wind becomes the dominant factor. For the ride quality of the maglev vehicle, wind is also the most influential factor.
A frequency equation of externally and internally damped and shear-flexible cantilever columns subjected to a subtangentially follower force is analytically derived in a dimensionless form with relation to the linear instability theory of Beck’s columns. Some parametric studies are then performed with variation of two damping coefficients under the assumption of Rayleigh damping. Based on the analysis results, it is demonstrated that three damping cases in association with flutter loads of Beck’s columns can be selected including one case representative of structural damping. Finally, stability maps of shear-flexible and damped Beck’s columns are constructed for the three damping cases and discussed in the practical range of damping coefficients and shear parameters. In addition, flutter loads and time history analysis results are presented using dimensionless FE analysis and compared with exact solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.