As a major component of the epidermal tissue, a primary keratinocyte has served as an essential tool not only for the study of pathogenesis of skin-related diseases but also for the assessment of potential toxicities of various chemicals used in cosmetics. However, its short lifespan in ex vivo setting has been a great hurdle for many practical applications. Therefore, a number of immortalization attempts have been made with success to overcome this limitation. In order to understand the immortalization process of a primary keratinocyte, several key biological phenomena governing its lifespan will be reviewed first. Then, various immortalization methods for the establishment of stable keratinocyte cell lines will be explained. Finally, its application to a three-dimensional skin culture system will be described.
Hepatitis C virus (HCV) is a hepatotropic single-stranded RNA virus. HCV infection is causally linked with development of liver cirrhosis and hepatocellular carcinoma. Enhanced production of reactive oxygen species by HCV has been implicated to play an important role in HCV-induced pathogenesis. Mangosteen has been widely used as a traditional medicine as well as a dietary supplement ,thanks to its powerful anti-oxidant effect. In the present study, we demonstrated that the ethanol extract from mangosteen fruit peels (MG-EtOH) is able to block HCV genome replication using HCV genotype 1b Bart79I subgenomic (EC50 5.1 μg/mL) and genotype 2a J6/JFH-1 infectious replicon systems (EC50 3.8 μg/mL). We found that inhibition of HCV replication by MG-EtOH led to subsequent down-regulation of expression of HCV proteins. Interestingly, MG-EtOH exhibited a modest inhibitory effect on in vitro RNA polymerase activity of NS5B. Among a number of xanthones compounds identified within this MG-EtOH, we discovered α-MG (EC50 6.3 μM) and γ-MG (EC50 2.7 μM) as two major single molecules responsible for suppression of HCV replication. This finding will provide a valuable molecular basis to further develop mangosteen as an important dietary supplement to combat HCV-induced liver diseases.
Chronic hepatitis C virus (HCV) infection is responsible for severe liver diseases including liver cirrhosis and hepatocellular carcinoma. An HCV non-structural protein 4B (NS4B) plays an essential role in viral RNA genome replication by building multi-vesicular structures around endoplasmic reticulum membranes. Especially, the second amphipathic helix of NS4B (NS4B-AH2) was shown to be essential for this process. By screening compounds against a membrane-aggregating activity of NS4B-AH2, several anti-HCV replication small molecules targeting NS4B-AH2 were discovered. However, little is known about detailed molecular mechanism of action for these NS4B-AH2 inhibitors. In this report, we provide evidences that NS4B-AH2 is required for NS4B's dimerization/multimerization, its proper subcellular localization, as well as its interaction with NS5A. More importantly, one of NS4B-AH2 inhibitors called "anguizole" was found to be able to disrupt all of these NS4B-AH2-mediated biological functions of NS4B. This newly elucidated mechanism of action will enable us not only to better understand a central role of NS4B-AH2 in HCV life cycle but also to develop a more safe and effective new class of NS4B-AH2 inhibitors of HCV replication in the future.
In spite of frequent usage of primary human foreskin keratinocytes (HFKs) in the study of skin biology, senescence-induced blockage of in vitro proliferation has been a big hurdle for their effective utilization. In order to overcome this passage limitation, we first isolated ten HFK lines from circumcision patients and successfully immortalized four of them via a retroviral transduction of high-risk human papillomavirus (HPV) E6 and E7 oncogenes. We confirmed expression of a keratinocyte marker protein, keratin 14 and two viral oncoproteins in these immortalized HFKs. We also observed their robust responsiveness to various exogenous stimuli, which was evidenced by increased mRNA expression of epithelial differentiation markers and pro-inflammatory genes in response to three reactive chemicals. In addition, their applicability to cytotoxicity assessment turned out to be comparable to that of HaCaT cells. Finally, we confirmed their differentiation capacity by construction of well-stratified three dimensional skin cultures. These newly established immortalized HFKs will be valuable tools not only for generation of in vitro skin disease models but also for prediction of potential toxicities of various cosmetic chemicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.