In this paper, the focus on the removal noise in the binary image based on the variational Bayesian method with the Ising model. The observation and the latent variable are the degraded image and the original image, respectively. The posterior distribution is built using the Markov random field and the Ising model. Estimating the posterior distribution is the same as reconstructing a degraded image. MCMC and variational Bayesian inference are two methods for estimating the posterior distribution. However, for the sake of computing efficiency, we adapt the variational technique. When the image is restored, the iterative method is used to solve the recursive problem. Since there are three model parameters in this paper, restoration is implemented using the VECM algorithm to find appropriate parameters in the current state. Finally, the restoration results are shown which have maximum peak signal-to-noise ratio (PSNR) and evidence lower bound (ELBO).
In forensic practice, evaluating shoeprint evidence is challenging because the differences between images of two different outsoles can be subtle. In this paper, we propose a deep transfer learning‐based matching algorithm called the Shoe‐MS algorithm that quantifies the similarity between two outsole images. The Shoe‐MS algorithm consists of a Siamese neural network for two input images followed by a transfer learning component to extract features from outsole impression images. The added layers are finely tuned using images of shoe soles. To test the performance of the method we propose, we use a study dataset that is both realistic and challenging. The pairs of images for which we know ground truth include (1) close non‐matches and (2) mock‐crime scene pairs. The Shoe‐MS algorithm performed well in terms of prediction accuracy and was able to determine the source of pairs of outsole images, even when comparisons were challenging. When using a score‐based likelihood ratio, the algorithm made the correct decision with high probability in a test of the hypothesis that images had a common source. An important advantage of the proposed approach is that pairs of images can be compared without alignment. In initial tests, Shoe‐MS exhibited better‐discriminating power than existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.