Background: Mast cells modulate events in wound healing. Results: Shorter forms of perlecan are produced by mast cells via proteolytic processing and alternative splicing, which contain domain V and functional endorepellin.
Conclusion:The production of these shorter forms modulates endothelial cell adhesion, proliferation, and migration. Significance: Mast cells produce specific forms of perlecan that affect endothelial cell behavior.
Myc transcriptional activity is frequently deregulated in human cancers, but a Myc-driven gene signature with prognostic ability across multiple tumor types remains lacking. Here, we selected 18 Myc-regulated genes from published studies of Myc family targets in epithelial ovarian cancer (EOC) and neuroblastoma. A Myc family activity score derived from the 18 genes was correlated to // expression in a panel of 35 cancer cell lines. The prognostic ability of this signature was evaluated in neuroblastoma, medulloblastoma, diffuse large B-cell lymphoma (DLBCL), and EOC microarray gene expression datasets using Kaplan-Meier and multivariate Cox regression analyses and was further validated in 42 primary neuroblastomas using qPCR. Cell lines with high , and/or gene expression exhibited elevated expression of the signature genes. Survival analysis showed that the signature was associated with poor outcome independently of well-defined prognostic factors in neuroblastoma, breast cancer, DLBCL, and medulloblastoma. In EOC, the 18-gene Myc activity signature was capable of identifying a group of patients with poor prognosis in a "high-" molecular subtype but not in the overall cohort. The predictive ability of this signature was reproduced using qPCR analysis of an independent cohort of neuroblastomas, including a subset of tumors without amplification. These data reveal an 18-gene Myc activity signature that is highly predictive of poor prognosis in diverse Myc-associated malignancies and suggest its potential clinical application in the identification of Myc-driven tumors that might respond to Myc-targeted therapies..
Diffuse Intrinsic Pontine Gliomas (DIPG) are the most devastating of all pediatric brain tumors. They mostly affect young children and, as there are no effective treatments, almost all patients with DIPG will die of their tumor within 12 months of diagnosis. A key feature of this devastating tumor is its intrinsic resistance to all clinically available therapies. It has been shown that glioma development is associated with metabolic reprogramming, redox state disruption and resistance to apoptotic pathways. The mitochondrion is an attractive target as a key organelle that facilitates these critical processes. PENAO is a novel anti-cancer compound that targets mitochondrial function by inhibiting adenine nucleotide translocase (ANT). Here we found that DIPG neurosphere cultures express high levels of ANT2 protein and are sensitive to the mitochondrial inhibitor PENAO through oxidative stress, while its apoptotic effects were found to be further enhanced upon co-treatment with mTOR inhibitor temsirolimus. This combination therapy was found to act through inhibition of PI3K/AKT/mTOR pathway, HSP90 and activation of AMPK. In vivo experiments employing an orthotopic model of DIPG showed a marginal anti-tumour effect likely due to poor penetration of the inhibitors into the brain. Further testing of this anti-DIPG strategy with compounds that penetrate the BBB is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.