The termination behavior of probabilistic programs depends on the outcomes of random assignments. Almost sure termination (AST) is concerned with the question whether a program terminates with probability one on all possible inputs. Positive almost sure termination (PAST) focuses on termination in a finite expected number of steps. This paper presents a fully automated approach to the termination analysis of probabilistic while-programs whose guards and expressions are polynomial expressions. As proving (positive) AST is undecidable in general, existing proof rules typically provide sufficient conditions. These conditions mostly involve constraints on supermartingales. We consider four proof rules from the literature and extend these with generalizations of existing proof rules for (P)AST. We automate the resulting set of proof rules by effectively computing asymptotic bounds on polynomials over the program variables. These bounds are used to decide the sufficient conditions – including the constraints on supermartingales – of a proof rule. Our software tool Amber can thus check AST, PAST, as well as their negations for a large class of polynomial probabilistic programs, while carrying out the termination reasoning fully with polynomial witnesses. Experimental results show the merits of our generalized proof rules and demonstrate that Amber can handle probabilistic programs that are out of reach for other state-of-the-art tools.
We present a novel static analysis technique to derive higher moments for program variables for a large class of probabilistic loops with potentially uncountable state spaces. Our approach is fully automatic, meaning it does not rely on externally provided invariants or templates. We employ algebraic techniques based on linear recurrences and introduce program transformations to simplify probabilistic programs while preserving their statistical properties. We develop power reduction techniques to further simplify the polynomial arithmetic of probabilistic programs and define the theory of moment-computable probabilistic loops for which higher moments can precisely be computed. Our work has applications towards recovering probability distributions of random variables and computing tail probabilities. The empirical evaluation of our results demonstrates the applicability of our work on many challenging examples.
We present a novel static analysis technique to derive higher moments for program variables for a large class of probabilistic loops with potentially uncountable state spaces. Our approach is fully automatic, meaning it does not rely on externally provided invariants or templates. We employ algebraic techniques based on linear recurrences and introduce program transformations to simplify probabilistic programs while preserving their statistical properties. We develop power reduction techniques to further simplify the polynomial arithmetic of probabilistic programs and define the theory of moment-computable probabilistic loops for which higher moments can precisely be computed. Our work has applications towards recovering probability distributions of random variables and computing tail probabilities. The empirical evaluation of our results demonstrates the applicability of our work on many challenging examples.CCS Concepts: • Mathematics of computing → Markov processes; • Computing methodologies → Symbolic and algebraic algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.