The purpose of this study was to evaluate the shear performance of concrete beams with integrated shear reinforcements made of steel plates and rebar bent in an N shape (N-type rebar), and to evaluate the applicability of the current relevant design standards. For this purpose, four concrete beam specimens were manufactured. Four-point loading tests were performed with all the specimens. The experiments confirmed that both types of shear reinforcements had a shear-reinforcing effect (an about 60% increase in shear strength), but the N-type rebar did not exceed the nominal shear strength, probably because the rebar did not yield sufficiently. A sufficient number of steel-plate-type shear reinforcements yielded in the shear crack. When evaluating the shear performance of a new shear reinforcement, it is necessary to calculate the design strength by actually reflecting whether the shear reinforcements’ yields are due to the angle of the diagonal crack. Calculating the shear contribution based on the strain of the shear reinforcements and comparing this shear strength with those five design standards, the shear strength of the shear reinforcements were evaluated conservatively. It is considered that there will be no problem in structural safety even if the shear design is carried out according to the current design standards.
This study presents a new concept for a deck plate and an accompanying application for a slab system that is easy to fix and separate during construction, while ensuring safe construction loads and optimal flexural performance. Finite element analysis (FEA) was used to determine the load on the fixing device’s contact surface and the specimen’s shape. A direct tensile test was then performed using a universal testing machine to evaluate the anchorage performance of the fixing device. The results of this test were used to optimize the details of the fixing device, which were then evaluated for safety against construction loads. The installation interval and method of the fixing device were varied to determine the maximum installation interval, which was within 300 mm. Finally, flexural performance was evaluated based on the details and spacing of the fixing device installation. The results showed that the details and spacing of the fixing device did not have a significant effect on flexural performance, provided that safety against construction loads was secured. This study describes a promising solution for a slab system that is easy to install and separate during construction, while ensuring safety and flexural performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.