Degradation of images and segmentation are the two most demanding fields for medical image processing, particularly when explicitly applied. The involvement of noise not only deteriorates the visual quality but also the precision of the segmentation which is vital to the medical diagnosis process of development. The complicated and monotonous main task is to manually denoise medical images such as CT, ultrasound and large numbers of clinical routine MRI images. The medical image must be denoised automatically. The proposed approach is associated with less complexity, this follows from the fact that, the design of system and time for optimization. Results show their efficacy for noise removal in medical ultrasound and MRI images .The final results of the proposed scheme in terms of noise reduction and structural preservation are excellent. However the proposed scheme is compared with existing methods and the performance of the proposed method in terms of visual quality, image quality index, peak SNR and PSNR is shown to be superior to existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.