Rat calvarial cell mitogenic behavior was investigated on various biomaterials coated with Matrigel, a basement membrane matrix containing growth factors. Low (20-40%) and high (70-90%) crystallinity hydroxyapatite (rHA and cHA), rough titanium (Ti), and tissue culture polystyrene (TP) surfaces were compared. Surface chemistry and calcium resorption of HA coatings, alkaline phosphatase activity (APA), and growth of cells were measured for Matrigel-coated and uncoated surfaces at 2, 7, and 14 days. Gene expression for four noncollagenous bone-related proteins (osteonectin, osteopontin, alkaline phosphatase, and osteocalcin) was also investigated by reverse transcription and polymerase chain reaction up to 28 days. Ca concentration in incubating solutions increased with time for the two types of HA coatings and was always greater for rHA than cHA. Surface chemistry and coating dissolution rates were not affected by the presence of Matrigel or cells throughout the study. APA of cells on the two HA-coated surfaces was comparably enhanced in the presence of Matrigel and was greater than on Ti surfaces. Only HA surfaces showed an increased APA of cells with time in the presence of Matrigel. Cell growth peaked at 7 days and was greatest for cells on the two HA surfaces and without Matrigel. At 14 days, cell growth was comparable on the four surfaces. The presence of HA and Matrigel enhanced cell-specific APA at 14 days. Gene expression for all four proteins investigated showed no differences between surfaces after 7 days. At 2 and 7 days, gene expression was indicative of proliferation for Ti, and of proliferation, differentiation, and mineralization for HA and TP more so without Matrigel. The addition of this matrix significantly enhanced mitogenicity of calvarial cells on HA only after 14 days. Matrigel eliminated differences seen between the two HA coatings. Gene expression was not enhanced or inhibited by the presence of Matrigel.
As-cast, porous surfaced CoCr implants were tested for bone interfacial shear strength in a canine transcortical model. Three-dimensional printing (3DP) was used to create complex molds with a dimensional resolution of 175 microm. 3DP is a solid freeform fabrication technique that can generate ceramic pieces by printing binder onto a bed of ceramic powder. A printhead is rastered across the powder, building a monolithic mold, layer by layer. Using these 3DP molds, surfaces can be textured "as-cast," eliminating the need for additional processing as with commercially available sintered beads or wire mesh surfaces. Three experimental textures were fabricated, each consisting of a surface layer and deep layer with distinct individual porosities. The surface layer ranged from a porosity of 38% (Surface Y) to 67% (Surface Z), whereas the deep layer ranged from 39% (Surface Z) to 63% (Surface Y). An intermediate texture was fabricated that consisted of 43% porosity in both surface and deep layers (Surface X). Control surfaces were commercial sintered beaded coatings with a nominal porosity of 37%. A well-documented canine transcortical implant model was utilized to evaluate these experimental surfaces. In this model, five cylindrical implants were placed in transverse bicortical defects in each femur of purpose bred coonhounds. A Latin Square technique was used to randomize the experimental implants left to right and proximal to distal within a given animal and among animals. Each experimental site was paired with a porous coated control site located at the same level in the contralateral limb. Thus, for each of the three time periods (6, 12, and 26 weeks) five dogs were utilized, yielding a total of 24 experimental sites and 24 matched pair control sites. At each time period, mechanical push-out tests were used to evaluate interfacial shear strength. Other specimens were subjected to histomorphometric analysis. Macrotexture Z, with the highest surface porosity, failed at a significantly higher shear stress (p = 0.05) than the porous coated controls at 26 weeks. It is postulated that an increased volume of ingrown bone, resulting from a combination of high surface porosity and a high percentage of ingrowth, was responsible for the observed improvement in strength. Macrotextures X and Y also had significantly greater bone ingrowth than the controls (p = 0.05 at 26 weeks), and displayed, on average, greater interfacial shear strengths than controls, although they were not statistically significant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.