We report on a systematic study of the magnetoelectric effect in cobalt ferrite (CoFe2O4)—barium titanate (BaTiO3) ceramic composites with (0‐3) connectivity. Both the converse magnetoelectric coefficient, αC, and the direct voltage magnetoelectric coefficient, αE, were measured in dependence on composition and electric and magnetic bias fields. The strongest ME effect was observed in the composition (1−x) CoFe2O4–xBaTiO3 with x = 0.5 yielding values αC = 25 psm−1 and αE = 3.2 mV/(cm·Oe). We show that the proper conversion between these two coefficients demands knowledge about the dielectric permittivity of the sample. For low BaTiO3 content the dielectric coefficient of the composite yields a better correspondence, whereas for high BaTiO3 content the sample's average dielectric coefficient yields a better match. The influence of mutual orientation of polarization and magnetization on the ME effect is addressed. We found that for measurements performed parallel to the polarization direction (longitudinal effect), the ME coefficient is approximately twice as large and of opposite sign in comparison to the measurements perpendicular to the polarization direction (transverse effect). This difference has been rationalized in terms of the different contributions of the material coefficient tensor components to the ME effect, the demagnetizing factor, and losses. The obtained results provide a better understanding of peculiarities of the ME effect in bulk ceramic composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.