Upon the identification of anandamide (AEA) in the porcine brain, numerous studies contributed to the current state of knowledge regarding all elements that form the “endocannabinoid system (ECS).”How this complex system of receptors, ligands, and enzymes is integrated in helping to regulate fundamental processes at level of central nervous and peripheral systems and how its regulation and dysregulation might counteract disturbances of such functions, is nowadays still under investigation. However, the most recent advances on the physiological distribution and functional role of ECS allowed the progress of various research tools aimed at the therapeutic exploitation of endocannabinoid (eCB) signaling, as well as the development of novel drugs with pharmacological advantages. Here, we shall briefly overview the metabolic and signal transduction pathways of the main eCBs representatives, AEA, and 2-arachidonoylglycerol (2-AG), and we will discuss the therapeutic potential of new ECS-oriented drugs.
Neural stem cells (NSCs) are self-renewing cells that can differentiate into multiple neural lineages and repopulate regions of the brain after injury. We have investigated the role of endocannabinoids (eCBs), endogenous cues that modulate neuronal functions including neurogenesis, and their receptors CB1 and CB2 in mouse NSCs. Real-time PCR and Western blot analyses indicated that CB1 is present at higher levels than CB2 in NSCs. The eCB anandamide (AEA) or the CB1-specific agonist ACEA enhanced NSC differentiation into neurons, but not astrocytes and oligodendrocytes, whereas the CB2-specific agonist JWH133 was ineffective. Conversely, the effect of AEA was inhibited by CB1, but not CB2, antagonist, corroborating the specificity of the response. CB1 activation also enhanced maturation of neurons, as indicated by morphometric analysis of neurites. CB1 stimulation caused long-term inhibition of the ERK1/2 pathway. Consistently, pharmacological inhibition of the ERK1/2 pathway recapitulated the effects exerted by CB1 activation on neuronal differentiation and maturation. Lastly, gene array profiling showed that CB1 activation augmented the expression of genes involved in neuronal differentiation while decreasing that of stemness genes. These results highlight the role of CB1 in the regulation of NSC fate and suggest that its activation may represent a pro-neuronal differentiation signal.
Male infertility is a major cause of problems for many couples in conceiving a child. Recently, lifestyle pastimes such as alcohol, tobacco and marijuana have been shown to have further negative effects on male reproduction. The endocannabinoid system (ECS), mainly through the action of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) at cannabinoid (CB1, CB2) and vanilloid (TRPV1) receptors, plays a crucial role in controlling functionality of sperm, with a clear impact on male reproductive potential. Here, sperm from fertile and infertile men were used to investigate content (through LC-ESI-MS), mRNA (through quantitative RT-PCR), protein (through Western Blotting and ELISA) expression, and functionality (through activity and binding assays) of the main metabolic enzymes of AEA and 2-AG (NAPE-PLD and FAAH, for AEA; DAGL and MAGL for 2-AG), as well as of their binding receptors CB1, CB2 and TRPV1. Our findings show a marked reduction of AEA and 2-AG content in infertile seminal plasma, paralleled by increased degradation: biosynthesis ratios of both substances in sperm from infertile versus fertile men. In addition, TRPV1 binding was detected in fertile sperm but was undetectable in infertile sperm, whereas that of CB1 and CB2 receptors was not statistically different in the two groups. In conclusion, this study identified unprecedented alterations of the ECS in infertile sperm, that might impact on capacitation and acrosome reaction, and hence fertilization outcomes. These alterations might also point to new biomarkers to determine male reproductive defects, and identify distinct ECS elements as novel targets for therapeutic exploitation of ECS-oriented drugs to treat male fertility problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.