Manipulation of the ubiquitin-proteasome pathway to achieve targeted silencing of cellular proteins has emerged as a reliable and customizable strategy for remodeling the mammalian proteome. One such approach involves engineering bifunctional proteins called ubiquibodies that are comprised of a synthetic binding protein fused to an E3 ubiquitin ligase, thus enabling post-translational ubiquitination and degradation of a target protein independent of its function. Here, we have designed a panel of new ubiquibodies based on E3 ubiquitin ligase mimics from bacterial pathogens that are capable of effectively interfacing with the mammalian proteasomal degradation machinery for selective removal of proteins of interest. One of these, the Shigella flexneri effector protein IpaH9.8 fused to a fibronectin type III ( FN3 ) monobody that specifically recognizes green fluorescent protein (GFP), was observed to potently eliminate GFP and its spectral derivatives as well as 15 different FP-tagged mammalian proteins that varied in size (27–179 kDa) and subcellular localization (cytoplasm, nucleus, membrane-associated, and transmembrane). To demonstrate therapeutically relevant delivery of ubiquibodies, we leveraged a bioinspired molecular assembly method whereby synthetic mRNA encoding the GFP-specific ubiquibody was coassembled with poly A binding proteins and packaged into nanosized complexes using biocompatible, structurally defined polypolypeptides bearing cationic amine side groups. The resulting nanoplexes delivered ubiquibody mRNA in a manner that caused efficient target depletion in cultured mammalian cells stably expressing GFP as well as in transgenic mice expressing GFP ubiquitously. Overall, our results suggest that IpaH9.8-based ubiquibodies are a highly modular proteome editing technology with the potential for pharmacologically modulating disease-causing proteins.
Ubiquibodies (uAbs) are a customizable proteome editing technology that utilizes E3 ubiquitin ligases genetically fused to synthetic binding proteins to steer otherwise stable proteins of interest (POIs) to the 26S proteasome for degradation. The ability of engineered uAbs to accelerate the turnover of exogenous or endogenous POIs in a post-translational manner offers a simple yet robust tool for dissecting diverse functional properties of cellular proteins as well as for expanding the druggable proteome to include tumorigenic protein families that have yet-to-be successfully drugged by conventional inhibitors. Here, we describe the engineering of uAbs composed of human carboxyl-terminus of Hsc70-interacting protein (CHIP), a highly modular human E3 ubiquitin ligase, tethered to differently designed ankyrin repeat proteins (DARPins) that bind to nonphosphorylated (inactive) and/or doubly phosphorylated (active) forms of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Two of the resulting uAbs were found to be global ERK degraders, pan-specifically capturing all endogenous ERK1/2 protein forms and redirecting them to the proteasome for degradation in different cell lines, including MCF7 breast cancer cells. Taken together, these results demonstrate how the substrate specificity of an E3 ubiquitin ligase can be reprogrammed to generate designer uAbs against difficult-to-drug targets, enabling a modular platform for remodeling the mammalian proteome.
There is an urgent need for affinity reagents that target phospho-modified sites on individual proteins; however, generating such reagents remains a significant challenge. Here, we describe a genetic selection strategy for routine laboratory isolation of phospho-specific designed ankyrin repeat proteins (DARPins) by linking in vivo affinity capture of a phosphorylated target protein with antibiotic resistance of Escherichia coli cells. The assay is validated using an existing panel of DARPins that selectively bind the nonphosphorylated (inactive) form of extracellular signal-regulated kinase 2 (ERK2) or its doubly phosphorylated (active) form (pERK2). We then use the selection to affinity-mature a phospho-specific DARPin without compromising its selectivity for pERK2 over ERK2 and to reprogram the substrate specificity of the same DARPin towards non-cognate ERK2. Collectively, these results establish our genetic selection as a useful and potentially generalizable protein engineering tool for studying phospho-specific binding proteins and customizing their affinity and selectivity.
Protein silencing is an important aspect of both scientific investigation of native protein function and therapeutic targeting of aberrant protein activity. Many techniques for silencing proteins at the DNA or RNA level exist such as CRISPR, RNAi, or TALEN. Cellular proteins can also be selectively removed at the posttranslational level using proteome editing techniques, many of which employ engineered proteins to engage natural cellular quality control machinery for accelerating the removal of otherwise stable proteins. Here, we summarize recent progress in the development of such engineered proteins, comparing them to analogous microbial-, viral-, and small molecule-based strategies for selectively degrading proteins of interest. Finally, we highlight the advantages and limitations of proteome editing technologies and discuss how the application of directed evolution could alleviate current challenges and usher in a new wave of designer proteins for diagnostic and therapeutic application.
Ubiquibodies (uAbs) are a customizable proteome editing technology that utilizes E3 ubiquitin ligases genetically fused to synthetic binding proteins to steer otherwise stable proteins of interest (POIs) to the proteasome for degradation. The ability of engineered uAbs to accelerate the turnover of exogenous or endogenous POIs in a posttranslational manner offers a simple yet robust tool for dissecting diverse functional properties of cellular proteins as well as for expanding the druggable proteome to include tumorigenic protein families that have yet-to-be successfully drugged by conventional inhibitors. Here, we describe the engineering of uAbs comprised of a highly modular human E3 ubiquitin ligase, human carboxyl terminus of Hsc70-interacting protein (CHIP), tethered to different designed ankyrin repeat proteins (DARPins) that bind to nonphosphorylated (inactive) and/or doubly phosphorylated (active) forms of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Two of the resulting uAbs were found to be global ERK degraders, pan-specifically capturing all endogenous ERK1/2 protein forms and redirecting them to the proteasome for degradation in different cell lines, including MCF7 breast cancer cells. Taken together, these results demonstrate how the substrate specificity of an E3 ubiquitin ligase can be reprogrammed to generate designer uAbs against difficult-to-drug targets, enabling a modular platform for remodeling the mammalian proteome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.