A comparison is made between the hemolytic actions of melittin and the ninth component of complement (C9). Melittin and C9 produce "pores" of similar effective radius in erythrocytes under standardized conditions, and their hemolytic action is suppressed by metal ions at similar concentrations, suggesting a common mechanism. Polyclonal anti-melittin immunoglobulin G (IgG) produced in rabbits retards hemolysis mediated by human C9 in a specific manner. Such antibodies react in several immunoassays with human and monkey C9 but not with C9 from lower animals, and no inhibition of lysis mediated by C9 molecules from these animals is observed. Thus, it is unlikely that anti-melittin IgG reacts with a structural element, such as an amphipathic helix, on human C9 since such structures are also predicted to exist in other C9 molecules. Human C9 and melittin block cross-reactivity in a dose-dependent manner, and anti-melittin IgG recognizes an epitope located between amino acid residues 245 and 390 of human C9 on "Western" blots. Comparison of the melittin and human C9 sequences indicates two regions of complete homology, a tetrapeptide at positions 292-295, and a pentapeptide at positions 527-531 in human C9, corresponding to residues 8-16 in melittin. Inhibition of hemolysis is not caused by blocking of C9 binding to the C5b-8 complex; rather the antibody must dissociate from the bound C9 before lysis ensues, indicating that it interferes with a postbinding event. It is proposed that anti-melittin binds to a conformational epitope on native, folded human C9 and thereby retards unfolding of the molecule, which is required for membrane insertion and hemolysis.
Tumor cells may inhibit the induction of a complement-mediated inflammatory response through overexpression of membrane-bound regulators of complement activation. Therefore, it is of interest to determine the most efficient approach to block these membrane-bound complement regulators on tumor cells. In the present study, we first generated a bispecific mAb directed against both CD55, using the functional blocking mAb MBC1, and the highly expressed HLA class I molecule as a model for a tumor-associated Ag, using the mAb W6/32. Tumor cells opsonized with bispecific mAb W6/32*MBC1, then exposed to complement and subsequently stained for C3 deposition, were assessed by flow cytometric analysis. We found that opsonization with W6/32*MBC1 resulted in a 92% enhancement of C3 deposition on renal tumor cells as compared with opsonization with W6/32 alone and a 17% enhancement of the C3 deposition as compared with incubation with a mixture of both parental mAb. Based on these results, we developed a bispecific mAb recognizing both CD55 and the relatively low expressed renal tumor-associated Ag G250. Increasing concentrations of the bispecific mAb G250*MBC1 resulted in a 25 to 400% increase in C3 deposition on renal tumor cells as compared with C3 deposition in the presence of the parental mAb G250 alone. G250*MBC1 enhanced C3 deposition by 21% in comparison with a mixture of both parentals. Furthermore, opsonization of tumor cells with G250*MBC1 rendered these cells more sensitive to complement-mediated lysis. In conclusion, the bispecific mAb G250*MBC1 induces deposition of C3 and tumor cell lysis more efficiently than G250 alone.
C activation has been implicated in the pathogenesis of numerous inflammatory human diseases and disease models. A therapy based on C inhibition might therefore be of benefit to reduce inflammation and ameliorate disease. C inhibition in vivo can be accomplished by the delivery of soluble recombinant C regulators either systemically or directly to a target site, but effects are transitory. We have developed a strategy for the efficient delivery of the membrane-bound rat C inhibitors, CD59, Crry, and decay-accelerating factor (DAF), using replication-deficient adenovirus vectors with the intention of treating rat models of disease in which C is implicated. The adenovirus recombinants(RAd), RAdCD59, RAdCrry, and RAdDAF, respectively, have been tested for expression and function of the transgene in vitro. Infection of human fetal foreskin fibroblasts resulted in high levels of expression of each of the rat inhibitors. The constructs were also tested for inhibition of rat C-mediated cell lysis and C3b deposition. In a cell lysis assay, each inhibited to varying degrees of efficiency in the order RAdCD59 = RAdDAF > RAdCrry. In a C3b deposition assay, RAdDAF caused a greater reduction in C3b deposition than RAdCrry and RAdCD59 was ineffective. These agents, individually or in combination, provide the tools for testing the effects of prolonged inhibition of C at a target site on the progress of experimental models of disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.