Dependence receptors are known to promote survival and positive signaling such as proliferation, migration, and differentiation when activated, but to actively trigger apoptosis when unbound to their ligand. Their abnormal regulation was shown to be an important feature of tumorigenesis, allowing cancer cells to escape apoptosis triggered by these receptors while promoting in parallel major aspects of tumorigenesis such as proliferation, angiogenesis, invasiveness, and chemoresistance. This involvement in multiple cancer hallmarks has raised interest in dependence receptors as targets for cancer therapy. Although additional studies remain necessary to fully understand the complexity of signaling pathways activated by these receptors and to target them efficiently, it is now clear that dependence receptors represent very exciting targets for future cancer treatment. This manuscript reviews current knowledge on the contribution of dependence receptors to cancer and highlights the potential for therapies that activate pro‐apoptotic functions of these proteins.
Compelling evidence suggests that tumor initiating cells (TIC) are the roots of current shortcomings in advanced and metastatic cancer treatment. TIC represents a minor subpopulation of tumor cells endowed with self-renewal and multi-lineage differentiation capacity, which can disseminate and seed metastasis in distant organ. Our work identified Streptomycin (SM), a potent bactericidal antibiotic, as a new molecule capable of targeting non-adherent TIC from colon and breast cancer cell lines by inducing mitochondrial-dependent ferroptosis. SM-induced ferroptosis associates with profound alterations in mitochondrial morphology, such as swelling and cristae enlargement, coupled with hyperpolarization of mitochondrial membrane potential and production of mitochondrial ROS. The peculiar SM structure, and more particularly its aldehyde group, is essential for this mechanism. As such, the mere reduction of SM into dihydrostreptomycin abolishes its effect on TICs. This study reveals a new mechanism of action of SM that could help comprehend the molecular basis of TIC adaptation to inhospitable environments and pave the way for new treatment of advanced cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.