In this work we demonstrate, to the best of our knowledge, a novel wide field-of-view upconversion system, supporting upconversion of monochromatic mid-infrared (mid-IR) images, e.g., for hyperspectral imaging (HSI). An optical parametric oscillator delivering 20 ps pulses tunable in the 2.3-4 μm range acts as a monochromatic mid-IR illumination source. A standard CCD camera, in synchronism with the crystal rotation of the upconversion system, acquires in only 2.5 ms the upconverted mid-IR images containing 64 kpixels, thereby eliminating the need for postprocessing. This approach is generic in nature and constitutes a major simplification in realizing video-frame-rate mid-IR monochromatic imaging. A second part of this paper includes a proof-of-principle study on esophageal tissues samples, from a tissue microarray, in the 3-4 μm wavelength range. The use of mid-IR HSI for investigation of esophageal cancers is particularly promising as it allows for a much faster and possibly more observer-independent workflow than state-ofthe-art histology. Comparing histologically stained sections evaluated by a pathologist to images obtained by either Fourier transform IR or upconversion HSI based on machine learning shows great promise for further work pointing towards clinical translation using the presented mid-IR HSI upconversion system.
To the best of our knowledge, we present the first demonstration of short-wavelength infrared image upconversion that employs intense picosecond signal and pump beams. We use a fiber laser that emits a signal beam at 1877 nm and a pump beam at 1550 nm-both with a pulse width of 1 ps and a pulse repetition rate of 21.7 MHz. Due to synchronization of high peak-power pulses, efficient upconversion is achieved in a single-pass setup that employs a bulk lithium niobate crystal. Optimizing the temporal overlap of the pulses for high upconversion efficiency enables us to exploit a relatively large pump beam diameter to upconvert a wider range of signal spatial frequencies in the crystal. The 1877 nm signal is converted into 849 nm-enabling an image to be acquired by a silicon CCD camera. The measured size of the smallest resolvable element of this imaging system is consistent with the value predicted by an improved model that considers the combined image blurring effect due to finite pump beam size, thick nonlinear crystal, and polychromatic infrared illumination.
Imaging and spectroscopy in the mid-infrared (Mid-IR) wavelength region have received considerable attention in recent years. The reason is the high Mid-IR spectral specificity of many gases and complex molecules. In this pilot study we focus on picosecond upconversion imaging exploiting the χ (2) nonlinearity of a bulk lithium niobate crystal as a means to convert the optical Mid-IR signal into the visible wavelength region, thus allowing the use of fast and sensitive silicon based CCD cameras. The picosecond upconversion system is synchronously pumped in order to increase the quantum efficiency, hence allowing for upconversion of faint pulsed Mid-IR light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.