Stromal cell‐derived factor‐1 (SDF‐1)/CXCL12, the ligand for CXCR4, induces signal transduction. We previously showed that CXCL12 binds to high‐ and low‐affinity sites expressed by primary cells and cell lines, and forms complexes with CXCR4 as expected and also with a proteoglycan, syndecan‐4, but does not form complexes with syndecan‐1, syndecan‐2, CD44 or beta‐glycan. We also demonstrated the occurrence of a CXCL12‐independent heteromeric complex between CXCR4 and syndecan‐4. However, our data ruled out the glycosaminoglycan‐dependent binding of CXCL12 to HeLa cells facilitating the binding of this chemokine to CXCR4. Here, we demonstrate that CXCL12 directly binds to syndecan‐4 in a glycosaminoglycan‐dependent manner. We show that upon stimulation of HeLa cells by CXCL12, CXCR4 becomes tyrosine phosphorylated as expected, while syndecan‐4 (but not syndecan‐1, syndecan‐2 or beta‐glycan) also undergoes such tyrosine phosphorylation. Moreover, tyrosine‐phosphorylated syndecan‐4 from CXCL12‐stimulated HeLa cells physically coassociates with tyrosine phosphorylated CXCR4. Pretreatment of the cells with heparitinases I and III prevented the tyrosine phosphorylation of syndecan‐4, which suggests that the heparan sulfate‐dependent binding of SDF‐1 to this proteoglycan is involved. Finally, by reducing syndecan‐4 expression using RNA interference or by pretreating the cells with heparitinase I and III mixture, we suggest the involvement of syndecan‐4 and heparan sulfate in p44/p42 mitogen‐activated protein kinase and Jun N‐terminal/stress‐activated protein kinase activation by action of CXCL12 on HeLa cells. However, these treatments did not modify the calcium mobilization induced by CXCL12 in these cells. Therefore, syndecan‐4 behaves as a CXCL12 receptor, selectively involved in some transduction pathways induced by SDF‐1, and heparan sulfate plays a role in these events.
The stromal cell-derived factor-1 (SDF-1) is a CXC chemokine, which plays critical roles in migration, proliferation, and differentiation of leukocytes. SDF-1 is the only known ligand of CXCR4, the coreceptor of X4 HIV strains. We show that SDF-1 binds to high- and low-affinity sites on HeLa cells. Coimmunoprecipitation studies demonstrate that glycanated and oligomerized syndecan-4 but neither syndecan-1, syndecan-2, betaglycan, nor CD44 forms complexes with SDF-1 and CXCR4 on these cells as well as on primary lymphocytes or macrophages. Moreover, biotinylated SDF-1 directly binds in a glycosaminoglycans (GAGs)-dependent manner to electroblotted syndecan-4, and colocalization of SDF-1 with syndecan-4 was visualized by confocal microscopy. Glycosaminidases pretreatment of the HeLa cells or the macrophages decreases the binding of syndecan-4 to the complex formed by it and SDF-1. In addition, this treatment also decreases the binding of the chemokine to CXCR4 on the primary macrophages but not on the HeLa cells. Therefore GAGs-dependent binding of SDF-1 to the cells facilitates SDF-1 binding to CXCR4 on primary macrophages but not on HeLa cell line. Finally, an SDF-1-independent heteromeric complex between syndecan-4 and CXCR4 was visualized on HeLa cells by confocal microscopy as well as by electron microscopy. Moreover, syndecan-4 from lymphocytes, monocyte derived-macrophages, and HeLa cells coimmunoprecipitated with CXCR4. This syndecan-4/CXCR4 complex is likely a functional unit involved in SDF-1 binding. The role of these interactions in the pathophysiology of SDF-1 deserves further study.
To engineer reliable in vitro liver tissue equivalents expressing differentiated hepatic functions at a high level and over a long period of time, it appears necessary to have liver cells organized into a three-dimensional (3D) multicellular structure closely resembling in vivo liver cytoarchitecture and promoting both homotypic and heterotypic cell-cell contacts. In addition, such high density 3D hepatocyte cultures should be adequately supplied with nutrients and particularly with oxygen since it is one of the most limiting nutrients in hepatocyte cultures. Here we propose a novel but simple hepatocyte culture system in a microplate-based format, enabling high density hepatocyte culture as a stable 3D-multilayer. Multilayered co-cultures of hepatocytes and 3T3 fibroblasts were engineered on collagen-conjugated thin polydimethylsiloxane (PDMS) membranes which were assembled on bottomless frames to enable oxygen diffusion through the membrane. To achieve high density multilayered co-cultures, primary rat hepatocytes were seeded in large excess what was rendered possible due to the removal of oxygen shortage generally encountered in microplate-based hepatocyte cultures. Hepatocyte/3T3 fibroblasts multilayered co-cultures were maintained for at least 1 week; the so-cultured cells were normoxic and sustained differentiated metabolic functions like albumin and urea synthesis at higher levels than hepatocytes monocultures. Such a microplate-based cell culture system appears suitable for engineering in vitro miniature liver tissues for implantation, bioartificial liver (BAL) development, or chemical/drug screening.
We recently demonstrated that RANTES forms complexes with CCR5, syndecan-1 (SD-1), SD-4, and CD44 expressed by human primary macrophages and that SD-1 and SD-4 but neither CD44 nor SD-2 coimmunoprecipitate with CCR5. Here we show that RANTES directly binds in a glycosaminoglycan-dependent manner to SD-1, SD-4, and CD44. Moreover, RANTES accelerates the shedding of SD-1 and SD-4 ectodomains from HeLa cells expressing CCR5 and, by contrast, has no effect on the constitutive shedding of CD44 from these cells. These accelerated sheddings are prevented by the MEK1/2 inhibitor, U0126, and by the protein kinase C inhibitor bisindolylmaleimide I. This indicates that both MAP kinase--and protein kinase C-dependent signaling pathways are involved in these RANTES-induced accelerated sheddings. RANTES also induces a decreased expression of SD-1 and SD-4 by HeLa cells expressing CCR5 and on the contrary an increased expression of CD44 by these cells. By contrast, RANTES neither accelerates the shedding of SD-1 and SD-4 ectodomains from HeLa cells lacking CCR5, nor changes the SD-1-, SD-4-, and CD44-plasma membrane expressions of these cells. CCR5 is therefore involved in the RANTES-induced accelerated shedding of SD-1 and SD-4 ectodomains. Nevertheless, the fact that RANTES stimulates in Hela cells (expressing or lacking CCR5) the mRNA synthesis of SD-1 and SD-4 indicates that the molecular events that follow the synthesis of these proteoglycans differ, according to the presence or not of CCR5. Finally, RANTES forms GAG-dependent complexes with the shed ectodomains of SD-1 and SD-4 as well as with those of CD44. The role of these events in the pathophysiology of RANTES deserves further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.