The objective of this study was to evaluate effects of different levels of lipopolysaccharide (LPS)-mediated oxidative stress on fresh meat quality. Crossbred lambs (n = 29) were blocked by weight and fed a standard finishing ration for the duration of the study. Lambs were individually housed and treatment groups were administered one of three intravenous injections every 72 h across a three-injection (9-day) cycle: saline control (Control), 50 ng LPS/kg bodyweight (BW) (LPS50), or 100 ng LPS/kg BW (LPS100). Rectal temperatures were measured to indicate inflammatory response. Lambs were harvested at the Loeffel Meat Laboratory, and 80 mg of pre-rigor Longissimus lumborum were collected in Control and LPS100 treatments within thirty minutes postmortem for RNA analysis. Wholesale loins were split and randomly assigned 1 or 14 d of wet aging. Chops were fabricated after aging and placed under retail display (RD) for 0 or 7 d. Animal was the experimental unit. Lipopolysaccharide-treated lambs had increased (P < 0.05) rectal temperatures at 1, 2, 4, and 24 h post-injection. Transcriptomics revealed significant (Praw < 0.05) upregulation in RNA pathways related to generation of oxidative stress in LPS100 compared to Control. A trend was found for tenderness (Warner-Bratzler Shear Force, WBSF) (P = 0.10), chops from LPS50 having lower shear force compared with Control at 1 d postmortem. Muscle from LPS50 treatment lambs exhibited greater troponin T degradation (P = 0.02) compared to all treatments at 1 d. Aging decreased WBSF (P < 0.0001), increased sarcoplasmic calcium concentration (P < 0.0001), pH (P < 0.0001), and proteolysis (P < 0.0001) across treatments. Following aging, chops increased discoloration as RD increased (P < 0.0001), with Control chops aged 14 d being the most discolored. Chops from lambs given LPS had higher (P < 0.05) a* values compared to control at 14 d of aging. The L* values were greater (P < 0.05) in LPS100 compared to both LPS50 and Control. Aging tended (P = 0.0608) to increase lipid oxidation during RD across either aging period. No significant differences (P > 0.05) in sarcomere length, proximate composition, fatty acid composition, or isoprostane content were found. These results suggest that defined upregulation of oxidative stress has no detriment on fresh meat color, but may alter biological pathways responsible for muscle stress response, apoptosis, and enzymatic processes, resulting in changes in tenderness early postmortem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.