Reward motivation enhances memory through interactions between mesolimbic, hippocampal, and cortical systemsboth during and after encoding. Developmental changes in these distributed neural circuits may lead to age-related differences in reward-motivated memory and the underlying neural mechanisms. Converging evidence from cross-species studies suggests that subcortical dopamine signaling is increased during adolescence, which may lead to stronger memory representations of rewarding, relative to mundane, events and changes in the contributions of underlying subcortical and cortical brain mechanisms across age. Here, we used fMRI to examine how reward motivation influences the "online" encoding and "offline" postencoding brain mechanisms that support long-term associative memory from childhood to adulthood. We found that reward motivation led to both age-invariant as well as adolescentspecific enhancements in associative memory after 24 hours. Furthermore, reward-related memory benefits were linked to age-varying neural mechanisms. During encoding, interactions between the prefrontal cortex and ventral tegmental area (VTA) were associated with better highreward memory to a greater degree with increasing age. Pre-to post-encoding changes in functional connectivity between the anterior hippocampus and VTA were also associated with better high-reward memory, but more so at younger ages. Our findings suggest that there may be developmental shiftsfrom offline subcortical to online cortical processesin the brain mechanisms supporting reward-motivated memory.
Reward motivation enhances memory through interactions between mesolimbic, hippocampal, and cortical systems - both during and after encoding. Developmental changes in these distributed neural circuits may lead to age-related differences in reward-motivated memory and the underlying neural mechanisms. Converging evidence from cross-species studies suggests that subcortical dopamine signaling is increased during adolescence, which may lead to stronger memory representations of rewarding, relative to mundane, events and changes in the contributions of underlying subcortical and cortical brain mechanisms across age. Here, we used fMRI to examine how reward motivation influences the "online" encoding and "offline" post-encoding brain mechanisms that support long-term associative memory from childhood to adulthood. We found that reward motivation led to both age-invariant as well as adolescent-specific enhancements in associative memory after 24 hours. Furthermore, reward-related memory benefits were linked to age-varying neural mechanisms. During encoding, interactions between the prefrontal cortex and ventral tegmental area (VTA) were associated with better high-reward memory to a greater degree with increasing age. Pre- to post-encoding changes in functional connectivity between the anterior hippocampus and VTA were also associated with better high-reward memory, but more so at younger ages. Our findings suggest that there may be developmental shifts - from offline subcortical to online cortical processes - in the brain mechanisms supporting reward-motivated memory.
Previously rewarding experiences can influence choices in new situations. Past work has demonstrated that existing reward associations can either help or hinder future behaviors and that there is substantial individual variability in the transfer of value across contexts. Developmental changes in reward sensitivity may also modulate the impact of prior reward associations on later goal-directed behavior. The current study aimed to characterize how reward associations formed in the past affected learning in the present from childhood to adulthood. Participants completed a reinforcement learning paradigm using high- and low-reward stimuli from a task completed 24 h earlier, as well as novel stimuli, as choice options. We found that prior high-reward associations impeded learning across all ages. We then assessed how individual differences in the prioritization of high- versus low-reward associations in memory impacted new learning. Greater high-reward memory prioritization was associated with worse learning performance for previously high-reward relative to low-reward stimuli across age. Adolescents also showed impeded early learning regardless of individual differences in high-reward memory prioritization. Detrimental effects of previous reward on choice behavior did not persist beyond learning. These findings indicate that prior reward associations proactively interfere with future learning from childhood to adulthood and that individual differences in reward-related memory prioritization influence new learning across age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.