Plant-based diets have become increasingly popular in the past decade, with approximately 11% of Americans self-identifying as vegan or vegetarian and many others trying to reduce meat consumption. Due to increasing interest, the plant-based food market has significantly expanded, with several innovative products serving as alternatives to animal-based products. One such example is almond protein powder, a new protein supplement created as an alternative to whey protein. Due to the novelty of almond protein products, little is known regarding how well the protein supplement supports nitrogen metabolism. The effects of both an almond-based protein beverage and a whey-based protein beverage on nitrogen balance are investigated in the work presented herein. Twenty female college students aged 20–25 years were randomly assigned to consume either an almond- or whey-based protein drink twice daily for one week; 24-h urine collection was performed at the baseline and endpoint of the 7-day treatment period and nitrogen balance was assessed. Body composition and hydration status were also assessed. Both protein sources (almond and whey) were able to notably improve nitrogen balance, thus indicating that almond protein powder may be a functional plant-based alternative to whey protein powder and may be of interest in future research regarding muscle mass and body composition improvement.
The success of performance in basketball relies on both optimal body composition and nutrient intake. The purpose of this study was to examine seasonal changes in body composition (BC), resting metabolic rate (RMR) and respiratory quotient (RQ), as well as dietary intake of National Collegiate Athletic Association (NCAA) Division I (DI) male basketball players. BC, RMR and RQ were assessed during pre-season, in-season, and post-season (September, December, and March) while dietary assessment data were collected in September and February. Results of this study indicated that players received inadequate energy (p < 0.0001), protein (p < 0.001) and carbohydrate (p < 0.0001) relative to the recommendations for exercising individuals during the September baseline period. However, following diet analysis and consultations and relative to recommendations, athletes received adequate amounts of energy and protein during follow-up, yet intakes of carbohydrate (p = 0.0025) were still significantly different than recommended. Results also indicated that there was a decrease in percent body fat (%BF) during season, an increase in lean body mass (LBM) from pre- to post-season, a peak in RMR during season and an increase in RQ post-season. These findings reveal that significant metabolic and body composition changes occur in players over the season and suggest that nutritional strategies employed concomitantly may be beneficial.
Dietary protein is required to support recovery and adaptation following exercise training. While prior research demonstrates that many athletes meet total daily protein needs, intake seems to be predominantly skewed toward the evening meal. An even distribution of protein doses of ≥0.24 g/kg BW consumed throughout the course of a day is theorized to confer greater skeletal muscle anabolism outcomes compared to a skewed pattern of intake. Protein quality is also an important dietary consideration for athletes, with the amino acid leucine seemingly serving as the primary driver of the postprandial anabolic response. The present study investigates protein consumption characteristics among a cohort of NCAA D1 soccer players and evaluates differences between male and female athletes. Athletes were instructed to complete 3-day food diaries, which were subsequently analyzed and compared to UEFA expert group-issued nutrition guidelines for soccer players. Breakfast, lunch, and dinner accounted for 81.4% of the total daily dietary protein intake. Most athletes (77.8%) ingested optimum amounts of protein at dinner but not at breakfast (11.1%) or lunch (47.2%). In addition, statistically significant sex-based differences in daily dietary protein intake, meal-specific protein amounts, and protein quality measures were detected. Findings indicate suboptimal dietary protein intake practices among the collegiate soccer athletes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.