Population sizes of invasive species are commonly characterized by boom-bust dynamics, and self-limitation via resource depletion is posited as one factor leading to these boom-bust changes in population size. Yet, while this phenomenon is well-documented in plants, few studies have demonstrated that self-limitation is possible for invasive animal species, especially those that are mobile. Here we examined the invasive Asian shore crab Hemigrapsus sanguineus, a species that reached very high abundances throughout invaded regions of North America, but has recently declined in many of these same regions. We examined the relationship between diet, energy storage, reproduction, and growth in crabs collected from the New Hampshire coast. We show that energy storage and reproduction both increase with diet quality, while growth declines with diet quality. These results suggest that self-limitation may be a contributing factor to the recent declines of H. sanguineus at sites where this invader was once much more abundant. Further, these results suggest a diet-associated tradeoff in energy allocation to different vital rates, with a focus on reproduction when high quality resources are consumed, and a focus instead on growth when poor quality resources are consumed.
Nonlethal injury is a pervasive stress on individual animals that can affect large portions of a population at any given time. Yet most studies examine snapshots of injury at a single place and time, making the implicit assumption that the impacts of nonlethal injury are constant. We sampled Asian shore crabs Hemigrapsus sanguineus throughout their invasive North American range and from the spring through fall of 2020. We then documented the prevalence of limb loss over this space and time. We further examined the impacts of limb loss and limb regeneration on food consumption, growth, reproduction, and energy storage. We show that injury differed substantially across sites and was most common towards the southern part of their invaded range on the East Coast of North America. Injury also varied idiosyncratically across sites and through time. It also had strong impacts on individuals via reduced growth and reproduction, despite increased food consumption in injured crabs. Given the high prevalence of nonlethal injury in this species, these negative impacts of injury on individual animals likely scale up to influence population level processes (e.g., population growth), and may be one factor acting against the widespread success of this invader.
Two common strategies organisms use to finance reproduction are capital breeding (using energy stored prior to reproduction) and income breeding (using energy gathered during the reproductive period). Understanding which of these two strategies a species uses can help in predicting its population dynamics and how it will respond to environmental change. Brachyuran crabs have historically been considered capital breeders as a group, but recent evidence has challenged this assumption. Here, we focus on the mangrove tree crab, Aratus pisonii, and examine its breeding strategy on the Atlantic Florida coast. We collected crabs during and after their breeding season (March–October) and dissected them to discern how energy was stored and utilized for reproduction. We found patterns of reproduction and energy storage that are consistent with both the use of stored energy (capital) and energy acquired (income) during the breeding season. We also found that energy acquisition and storage patterns that supported reproduction were influenced by unequal tidal patterns associated with the syzygy tide inequality cycle. Contrary to previous assumptions for crabs, we suggest that species of crab that produce multiple clutches of eggs during long breeding seasons (many tropical and subtropical species) may commonly use income breeding strategies.
Nonlethal injury is a common and ubiquitous feature of marine systems and can result in altered growth and survival rates. Ecological theory predicts that injured animals should face an energetic tradeoff between investing in recovery vs. investing in reproduction. Possible impacts on reproduction may range in magnitude from very strong (elimination of reproduction), to intermediate (reduced number of offspring), to weak (reduced investment in each offspring). While this tradeoff is well established in terrestrial systems, it has received little attention in the marine environment, particularly in a way that quantitatively relates the degree of injury to the degree of reproductive impact. We examined injury via limb loss across 4 sites in the mangrove tree crab Aratus pisonii. We found that limb loss was highest at the site that was closest to roads and had the highest level of human presence, and conversely, injury was lowest at the site furthest from the road and with the lowest level of human presence. We found evidence that the quality of consumed food likely decreases with the number of limbs lost, but found no influence of limb loss on amount of food consumed or on energy storage. We show that limb loss reduced the number of eggs produced and that the mass of the ovary declined with the number of regenerating limbs, providing direct evidence for a tradeoff between reproduction and injury recovery. Further, our study therefore suggests that these impacts may increase with the level of human disturbance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.