We report a series of de novo designed Artificial Cu Peptides (ArCuPs) that oxidize and peroxygenate C-H bonds of model abiotic substrates via electrochemically generated Cu-oxygen species using H2O2 as the terminal oxidant, akin to native Cu enzymes. Detailed assessment of kinetic parameters established the catalytic nature of the ArCuPs. Selective alteration of outer sphere steric at the d layers above and below the Cu site allows facilitated access of substrates, where a more pronounced effect on catalysis is observed when space is created at the d layer below the Cu site via Ile to Ala mutation producing a kcat of 6.2 s-1, TONmax of 14800 and catalytic proficiency (kcat/KM/kuncat) of 340 M-1 for the oxidation of benzyl alcohol. Independent spectroscopic studied revealed that the rate of formation of the Cu-oxygen species and the spectroscopic feature of the most active variant is distinct compared to the other ArCuPs. Systematic alteration of outer sphere hydrophobicity led to a correlated tuning of the T2 Cu site redox potentials by ~80 mV. The enhanced activity of the ArCuP variant is attributed to a combination of steric effect that allows easy access of substrates, the nature of Cu-oxygen species, and stability of this construct compared to others, where Ile to Ala mutation unexpectedly leads to a higher thermostability which is further augmented by Cu binding.
We report a series of de novo designed Artificial Cu Peptides (ArCuPs) that oxidize and peroxygenate C-H bonds of model abiotic substrates via electrochemically generated Cu-oxygen species using H2O2 as the terminal oxidant, akin to native Cu enzymes. Detailed assessment of kinetic parameters established the catalytic nature of the ArCuPs. Selective alteration of outer sphere steric at the d layers above and below the Cu site allows facilitated access of substrates, where a more pronounced effect on catalysis is observed when space is created at the d layer below the Cu site via Ile to Ala mutation producing a kcat of 6.2 s-1, TONmax of 14800 and catalytic proficiency (kcat/KM/kuncat) of 340 M-1 for the oxidation of benzyl alcohol. Independent spectroscopic studied revealed that the rate of formation of the Cu-oxygen species and the spectroscopic feature of the most active variant is distinct compared to the other ArCuPs. Systematic alteration of outer sphere hydrophobicity led to a correlated tuning of the T2 Cu site redox potentials by ~80 mV. The enhanced activity of the ArCuP variant is attributed to a combination of steric effect that allows easy access of substrates, the nature of Cu-oxygen species, and stability of this construct compared to others, where Ile to Ala mutation unexpectedly leads to a higher thermostability which is further augmented by Cu binding.
We report the construction of de novo designed artificial Cu peptides (ArCuPs) that support the oxidation and peroxygenation of C–H bonds of abiotic substrates via electrochemically generated Cu–oxygen species. Selective alteration of outer sphere steric at the d layers above and below the Cu site allows facilitated access of substrates, where a more pronounced effect on catalysis is observed when space is created at the d layer below the Cu site via Ile to Ala mutation. Independent spectroscopic studies revealed that the rate of formation of the Cu–oxygen species and the spectroscopic feature of the most active variant is distinct compared to the other ArCuPs. Systematic alteration of outer sphere hydrophobicity led to a correlated tuning of the T2 Cu site redox potentials by ∼80 mV. The enhanced activity of the ArCuP variant is attributed to a combination of steric effect that allows easy access of substrates, the nature of Cu–oxygen species, and stability of this construct compared to others, where Ile to Ala mutation unexpectedly leads to a higher thermostability that is further augmented by Cu binding.
We report a series of de novo designed Artificial Cu Peptides (ArCuPs) that oxidize and peroxygenate C-H bonds of model abiotic substrates via electrochemically generated Cu-oxygen species using H2O2 as the terminal oxidant, akin to native Cu enzymes. Detailed assessment of kinetic parameters established the catalytic nature of the ArCuPs. Selective alteration of outer sphere steric at the d layers above and below the Cu site allows facilitated access of substrates, where a more pronounced effect on catalysis is observed when space is created at the d layer below the Cu site via Ile to Ala mutation producing a kcat of 6.2 s-1, TONmax of 14800 and catalytic proficiency (kcat/KM/kuncat) of 340 M-1 for the oxidation of benzyl alcohol. Independent spectroscopic studied revealed that the rate of formation of the Cu-oxygen species and the spectroscopic feature of the most active variant is distinct compared to the other ArCuPs. Systematic alteration of outer sphere hydrophobicity led to a correlated tuning of the T2 Cu site redox potentials by ~80 mV. The enhanced activity of the ArCuP variant is attributed to a combination of steric effect that allows easy access of substrates, the nature of Cu-oxygen species, and stability of this construct compared to others, where Ile to Ala mutation unexpectedly leads to a higher thermostability which is further augmented by Cu binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.