Chemical 'spot' tests are a presumptive illicit drug identification technique commonly used by law enforcement, border security personnel, and forensic laboratories. The simplicity, low cost, and rapid results afforded by these tests make them particularly attractive for presumptive identification globally. In this paper, we review the development of these long-established methods and discuss color test recommendations and guidelines. A search of the scientific literature revealed the chemical reactions occurring in many color tests are either not actively investigated or reported as unknown.Today, color tests face many challenges, from the appearance of new psychoactive substances to concerns regarding selectivity, sensitivity, and safety. Advances in technology have seen color test reagents used in digital image color analysis, solid sensors, and microfluidic devices for illicit drug detection. This summarizes current research and suggests the future of presumptive color testing.
KEYWORDScolor spot test, illicit drugs, new psychoactive substances, presumptive identification, seized material
Increasing reports of neurological and psychiatric complications due to psychostimulant synthetic cathinones (SCs) have recently raised public concern. However, the precise mechanism of SC toxicity is unclear. This paucity of understanding highlights the need to investigate the in-vitro toxicity and mechanistic pathways of three SCs: butylone, pentylone, and 3,4-Methylenedioxypyrovalerone (MDPV). Human neuronal cells of SH-SY5Y were cultured in supplemented DMEM/F12 media and differentiated to a neuronal phenotype using retinoic acid (10 μM) and 12-O-tetradecanoylphorbol-13-acetate (81 nM). Trypan blue and lactate dehydrogenase assays were utilized to assess the neurotoxicity potential and potency of these three SCs. To investigate the underlying neurotoxicity mechanisms, measurements included markers of oxidative stress, mitochondrial bioenergetics, and intracellular calcium (Ca2+), and cell death pathways were evaluated at two doses (EC15 and EC40), for each drug tested. Following 24 h of treatment, all three SCs exhibited a dose-dependent neurotoxicity, characterized by a significant (p < 0.0001 vs. control) production of reactive oxygen species, decreased mitochondrial bioenergetics, and increased intracellular Ca2+ concentrations. The activation of caspases 3 and 7 implicated the orchestration of mitochondrial-mediated neurotoxicity mechanisms for these SCs. Identifying novel therapeutic agents to enhance an altered mitochondrial function may help in the treatment of acute-neurological complications arising from the illicit use of these SCs.
PAPER Fu et al. Development and validation of a presumptive colour spot test method for the detection of piperazine analogues in seized illicit materials Development and validation of a presumptive colour spot test method for the detection of piperazine analogues in seized illicit materials
The great increase of new psychoactive substances over the past decade has substantially transformed the illicit drug industry to an ever-changing dynamic market. 25-NBOMe compounds are just one of these new substance groups that pose a public health risk in many countries around the world. These highly potent, hallucinogenic phenethylamines have previously been sold as "legal highs" or "synthetic LSD" and the necessity to rapidly identify their presence is crucial.While there are many laboratory-based analytical methods capable of identifying these compounds, the lack of presumptive test methods indicates the need for a specific and timely test that could be used in the field. Herein we outline the developed chemical spot test that can selectively identify the presence of 25-NBOMe compounds and related analogs through the reaction with a substituted benzoquinone reagent under basic conditions. This test method has been comprehensively validated showing a high level of selectivity, specificity, and precision with only two other illicit substances producing similar positive results as 25-NBOMe and few false-negative results seen. The working limit of detection was determined to be 225 μg and there was no cross-reactivity from potential adulterants of significance. This test has also been shown to work directly with blotter papers containing 25-NBOMe compounds, indicating no interference from this common matrix and the ability to differentiate these compounds from LSD. This method shows a high potential to be translated to a field compatible test that is simple, rapid, and selective for 25-NBOMe compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.