In E. coli, DNA replication termination occurs at Ter sites and is mediated by Tus. Two clusters of five Ter sites are located on each side of the terminus region and constrain replication forks in a polar manner. The polarity is due to the formation of the Tus-Ter-lock intermediate. Recently, it has been shown that DnaB helicase which unwinds DNA at the replication fork is preferentially stopped at the non-permissive face of a Tus-Ter complex without formation of the Tus-Ter-lock and that fork pausing efficiency is sequence dependent, raising two essential questions: Does the affinity of Tus for the different Ter sites correlate with fork pausing efficiency? Is formation of the Tus-Ter-lock the key factor in fork pausing? The combined use of surface plasmon resonance and GFP-Basta showed that Tus binds strongly to TerA-E and G, moderately to TerH-J and weakly to TerF. Out of these ten Ter sites only two, TerF and H, were not able to form significant Tus-Ter-locks. Finally, Tus's resistance to dissociation from Ter sites and the strength of the Tus-Ter-locks correlate with the differences in fork pausing efficiency observed for the different Ter sites by Duggin and Bell (2009).
Aims: To compare the decontamination performances of glidarc on strains of Erwinia of industrial interest. Methods and Results: Cultures of Erwinia carotovora carotovora, Erwinia carotovora atroseptica and Erwinia chrysanthemi taken in stationary phase were exposed to the plasma generated by electric discharges in a gliding arc reactor prototype. The kinetics of destruction of bacteria were followed by direct platting. All bacterial strains presented a three-phase destruction kinetics leading to an apparent sterilization within 10 min. Epifluorescent observations using life/dead probes revealed the absence of viable but not cultivable resistant forms. Measurement of the physical parameters of the medium confirmed that the technique was nonthermal but that reactive species responsible for a decrease of the pH were generated. However, even after neutralization the medium did not allow bacterial growth.Conclusions: The results demonstrate that glidarc allows a rapid and complete destruction of planctonic strains of Erwinias without formation of resistant forms. Significance and Impact of the Study: The reduction rate obtained by this technique shows the great industrial interest of glidarc for decontamination and suggests that it can be used for sterilization of industrial water effluents.
Information about the stability of proteins is paramount to determine their optimal storage or reaction conditions. It is also essential to determine protein stability in high-throughput when screening for new or improved functions of proteins obtained from large mutant libraries. In drug discovery programs, monitoring of ligand-induced stabilization effects can be used to identify lead compounds in high-throughput. These studies require expensive biophysical instrumentation and large quantities of purified proteins. To address these issues, we developed a new method, using GFP as a reporter system to quantify the stability of a protein and its ligand-associated stabilization effects that requires neither special equipment nor extensive purification steps. Here, GFP is fused to a protein of interest (POI) through a linker and is used as a reporter system for protein unfolding and aggregation. The three POIs used in this study include the Ter-binding protein Tus, glycerol kinase and chloramphenicol acetyl transferase. The fluorescent fusion protein is subjected to irreversible thermal denaturation leading to formation of aggregates, which are eliminated by a centrifugation step. The residual fluorescence of the soluble fraction can be directly related to the stability of the POI and can be quantitatively monitored using a fluorescence plate reader. The GFP-based stability assay (GFP-Basta) was able to identify stabilizing compounds and afforded a new quantitative method for the screening and ranking of ligands for three different proteins. These applications are particularly useful for drug discovery, directed evolution, structural and functional genomics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.