Background Cancer cachexia is a multifactorial syndrome characterized by multiple metabolic dysfunctions. Besides the muscle, other organs such as the liver and the gut microbiota may also contribute to this syndrome. Indeed, the gut microbiota, an important regulator of the host metabolism, is altered in the C26 preclinical model of cancer cachexia. Interventions targeting the gut microbiota have shown benefits, but mechanisms underlying the host-microbiota crosstalk in this context are still poorly understood. Methods To explore this crosstalk, we combined proton nuclear magnetic resonance ( 1 H-NMR) metabolomics in multiple compartments with 16S rDNA sequencing. These analyses were complemented by molecular and biochemical analyses, as well as hepatic transcriptomics.Results 1 H-NMR revealed major changes between control (CT) and cachectic (C26) mice in the four analysed compartments (i.e. caecal content, portal vein, liver, and vena cava). More specifically, glucose metabolism pathways in the C26 model were altered with a reduction in glycolysis and gluconeogenesis and an activation of the hexosamine pathway, arguing against the existence of a Cori cycle in this model. In parallel, amino acid uptake by the liver, with an up to four-fold accumulation of nine amino acids (q-value <0.05), was mainly used for acute phase response proteins synthesis rather than to fuel the tricarboxylic acid cycle and gluconeogenesis. We also identified a 35% reduction in hepatic carnitine levels (q-value <0.05) and a lower activation of the phosphatidylcholine pathway as potential contributors to the hepatic steatosis present in this model. Our work also reveals a reduction of different beneficial intestinal bacterial activities in cancer cachexia. We found decreased levels of two short-chain fatty acids, acetate and butyrate (72% and 88% reduction in C26 caecal content; q-value <0.001), and a reduction in aromatic amino acid metabolites, which may contribute to the altered intestinal homeostasis in these mice. A member of the Ruminococcaceae family (ASV 2) was identified as the main bacterium responsible for the drop in butyrate. Finally, we report a two-fold intestinal transit acceleration (P-value <0.001) as a key factor shaping the gut microbiota composition and activity in cancer cachexia, which together lead to a faecal loss of proteins and amino acids. Conclusions Our work highlights new metabolic pathways potentially involved in cancer cachexia and further supports the interest of exploring the gut microbiota composition and activity, as well as intestinal transit, in cancer patients with and without cachexia.
Background Cancer cachexia is a debilitating metabolic syndrome contributing to cancer death. Organs other than the muscle may contribute to the pathogenesis of cancer cachexia. This work explores new mechanisms underlying hepatic alterations in cancer cachexia. Methods We used transcriptomics to reveal the hepatic gene expression profile in the colon carcinoma 26 cachectic mouse model. We performed bile acid, tissue mRNA, histological, biochemical, and western blot analyses. Two interventional studies were performed using a neutralizing interleukin 6 antibody and a bile acid sequestrant, cholestyramine. Our findings were evaluated in a cohort of 94 colorectal cancer patients with or without cachexia (43/51). Results In colon carcinoma 26 cachectic mice, we discovered alterations in five inflammatory pathways as well as in other pathways, including bile acid metabolism, fatty acid metabolism, and xenobiotic metabolism (normalized enrichment scores of −1.97, −2.16, and −1.34, respectively; all Padj < 0.05). The hepatobiliary transport system was deeply impaired in cachectic mice, leading to increased systemic and hepatic bile acid levels (+1512 ± 511.6 pmol/mg, P = 0.01) and increased hepatic inflammatory cytokines and neutrophil recruitment to the liver of cachectic mice (+43.36 ± 16.01 neutrophils per square millimetre, P = 0.001). Adaptive mechanisms were set up to counteract this bile acid accumulation by repressing bile acid synthesis and by enhancing alternative routes of basolateral bile acid efflux. Targeting bile acids using cholestyramine reduced hepatic inflammation, without affecting the hepatobiliary transporters (e.g. tumour necrosis factor α signalling via NFκB and inflammatory response pathways, normalized enrichment scores of −1.44 and −1.36, all Padj < 0.05). Reducing interleukin 6 levels counteracted the change in expression of genes involved in the hepatobiliary transport, bile acid synthesis, and inflammation. Serum bile acid levels were increased in cachectic vs. non‐cachectic cancer patients (e.g. total bile acids, +5.409 ± 1.834 μM, P = 0.026) and were strongly correlated to systemic inflammation (taurochenodeoxycholic acid and C‐reactive protein: ρ = 0.36, Padj = 0.017). Conclusions We show alterations in bile acid metabolism and hepatobiliary secretion in cancer cachexia. In this context, we demonstrate the contribution of systemic inflammation to the impairment of the hepatobiliary transport system and the role played by bile acids in the hepatic inflammation. This work paves the way to a better understanding of the role of the liver in cancer cachexia.
Bile acids exert diverse actions on host metabolism and immunity through bile acid-activated receptors, including Takeda G protein-coupled receptor 5 (TGR5). We have recently evidenced an alteration in bile acids in cancer cachexia, an inflammatory and metabolic syndrome contributing to cancer death. This current study aims to further explore the links emerging between bile acids and cancer cachexia. First, we showed that bile flow is reduced in cachectic mice. Next, comparing mice inoculated with cachexia-inducing and with non-cachexia-inducing C26 colon carcinoma cells, we demonstrated that alterations in the bile acid pathways and profile are directly associated with cachexia. Finally, we performed an interventional study using ursodeoxycholic acid (UDCA), a compound commonly used in hepatobiliary disorders, to induce bile acid secretion and decrease inflammation. We found that UDCA does not improve hepatic inflammation and worsens muscle atrophy in cachectic mice. This exacerbation of the cachectic phenotype upon UDCA was accompanied by a decreased TGR5 activity, suggesting that TGR5 agonists, known to reduce inflammation in several pathological conditions, could potentially counteract cachectic features. This work brings to light major evidence sustaining the emerging links between bile acids and cancer cachexia and reinforces the interest in studying bile acid-activated receptors in this context.
Loss of skeletal muscle mass in cancer cachexia is recognized as a predictor of mortality. This study aimed to characterize the changes in the muscle secretome associated with cancer cachexia to gain a better understanding of the mechanisms involved and to identify secreted proteins which may reflect this wasting process. The changes in the muscle proteome of the C26 model were investigated by label-free proteomic analysis followed by a bioinformatic analysis in order to identify potentially secreted proteins. Multiple reaction monitoring and Western blotting were used to verify the presence of candidate proteins in the circulation. Our results revealed a marked increased muscular production of several acute phase reactants (APR: Haptoglobin, Serine protease inhibitor A3N, Complement C3, Serum amyloid A-1 protein) which are released in the circulation during C26 cancer cachexia. This was confirmed in other models of cancer cachexia as well as in cancer patients. Glucocorticoids and proinflammatory cytokines are responsible for an increased production of APR by muscle cells. Finally, their muscular expressions are strongly positively correlated with body weight loss as well as the muscular induction of atrogens. Our study demonstrates therefore a marked increased production of APR by the muscle in cancer cachexia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.