The bio-synthesis of pyoverdine (PVD) in Pseudomonas aeruginosa involves multiple enzymatic steps including the action of non-ribosomal peptide synthetases (NRPSs). One hallmark of NRPS is their ability to make usage of non-proteinogenic amino-acids synthesized by co-expressed accessory enzymes. It is generally proposed that different enzymes of a secondary metabolic pathway assemble into large supra-molecular complexes. However, evidence for the assembly of sequential enzymes in the cellular context is sparse. Here, we used in cellulo single-molecule tracking and Förster resonance energy transfer measured by fluorescence lifetime microscopy (FRET-FLIM) to explore the spatial partitioning of the ornithine hydroxylase PvdA and its interactions with NRPS. We found PvdA was mostly diffusing bound to large complexes in the cytoplasm with a small exchangeable trapped fraction. FRET-FLIM clearly showed that PvdA is physically interacting with PvdJ, PvdI, PvdL, and PvdD, the four NRPS involved in the PVD pathway in Pseudomonas aeruginosa PAO1. The binding modes of PvdA were strikingly different according to the NRPS it is interacting with, suggesting that PvdA binding sites have co-evolved with the enzymatic active sites of NRPS. Our data provide evidence for strongly organized multi-enzymatic complexes responsible for the bio-synthesis of PVD and illustrate how binding sites have evolved to finely control the co-localization of sequential enzymes and promote metabolic pathway efficiency.
Tetraspanins are a family of transmembrane proteins that form a network of protein–protein interactions within the plasma membrane. Within this network, tetraspanin are thought to control the lateral segregation of their partners at the plasma membrane through mechanisms involving specific lipids. Here, we used a single molecule tracking approach to study the membrane behavior of tetraspanins in mammary epithelial cells and demonstrate that despite a common overall behavior, each tetraspanin (CD9, CD81 and CD82) has a specific signature in terms of dynamics. Furthermore, we demonstrated that tetraspanin dynamics on the cell surface are dependent on gangliosides. More specifically, we found that CD82 expression increases the dynamics of CD81 and alters its localization at the plasma membrane, this has no effect on the behavior of CD9. Our results provide new information on the ability of CD82 and gangliosides to differentially modulate the dynamics and organization of tetraspanins at the plasma membrane and highlight that its lipid and protein composition is involved in the dynamical architecture of the tetraspanin web. We predict that CD82 may act as a regulator of the lateral segregation of specific tetraspanins at the plasma membrane while gangliosides could play a crucial role in establishing tetraspanin-enriched areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.