The design and control of molecular systems that self-assemble spontaneously and exclusively at or near an interface represents a real scientific challenge. We present here a new concept, an active seed layer that allows to overcome this challenge. It is based on enzyme-assisted self-assembly. An enzyme, alkaline phosphatase, which transforms an original peptide, Fmoc-FFY(PO4 (2-) ), into an efficient gelation agent by dephosphorylation, is embedded in a polyelectrolyte multilayer and constitutes the "reaction motor". A seed layer composed of a polyelectrolyte covalently modified by anchoring hydrogelator peptides constitutes the top of the multilayer. This layer is the nucleation site for the Fmoc-FFY peptide self-assembly. When such a film is brought in contact with a Fmoc-FFY(PO4 (2-) ) solution, a nanofiber network starts to form almost instantaneously which extents up to several micrometers into the solution after several hours. We demonstrate that the active seed layer allows convenient control over the self-assembly kinetics and the geometric features of the fiber network simply by changing its peptide density.
The number of nosocomial infections related to implants and medical devices increase alarmingly worldwide. New strategies based on the design of antimicrobial coatings are required to prevent such infections. Polyelectrolyte “multilayer” films constitute a powerful tool for nanoscale surface functionalization which allows addressing this issue. By investigating films built up with poly(arginine) (PAR) of various chain lengths (10, 30, 100, and 200 residues) and hyaluronic acid (HA), we demonstrate that exclusively films constructed with poly(arginine) composed of 30 residues (PAR30) acquire a strong antimicrobial activity against Gram-positive and Gram-negative pathogenic bacteria associated with infections of medical devices. This chain-size effect is extremely striking and is the first example reported where the length of the polyelectrolytes played a key-role in the functionality of the films. Moreover, this unexpected functionality of nanolayered polypeptide/polysaccharide PAR30/HA films occurs without adding any specific antimicrobial agent, such as antibiotics or antimicrobial peptides. PAR30/HA film inhibits bacteria through a contact-killing mechanism due to the presence of mobile PAR30 chains. These chains are assumed to diffuse toward the interface, where they interact with the bacteria with the consequence of killing them. This new coating with unique properties based on the association of a homopolypeptide of 30 residues with a polysaccharide constitutes a simple system to prevent implant-related infections with a reasonable production cost.
Supramolecular hydrogels formed through non-covalent interactions of low molecular weight hydrogelators (LMWH) show great potential applications in different fields, such as delivery of therapeutics, injectable biomaterials, catalysis or materials chemistry. Generally, the self-assembly of LMWH is triggered by a sol-gel process through an external stimulus able to switch their solubility, such as temperature, pH or solvent change and chemical or enzymatic reactions. In this work, we introduced a new strategy to trigger and control the self-assembly of Fmoc-FFpY peptides: by direct electrostatic interactions with a polycation without dephosphorylation of the peptides. The resulting hydrogels show enhanced mechanical properties in comparison to gels of Fmoc-FFpY induced by enzymatic dephosphorylation. Peptide self-assembly yields -sheets, revealed by circular dichroism and infrared spectroscopy. Characteristic distances predicted by geometry optimization in the gas phase are in agreement with X-ray scattering data and TEM observations. It is proposed that core-shell cylinders are formed in which polycation chains decorate the micellar structures of Fmoc-FFpY peptides through electrostatic interactions between the charged amine groups of the polycations and the phosphate groups of the peptides. Since the gels form quickly and have superior mechanical properties, applications as injectable biomaterials are foreseen. This work opens a route towards a new class of self-assembled hydrogels, where Fmoc tripeptides can be self-assembled with specific polycations to obtain, for example, antimicrobial hydrogels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.