Over a decade after their discovery, induced pluripotent stem cells (iPSCs) have become a major biological model. The iPSC technology allows generation of pluripotent stem cells from somatic cells bearing any genomic background. The challenge ahead of us is to translate human iPSCs (hiPSCs) protocols into clinical treatment. To do so, we need to improve the quality of hiPSCs produced. In this study we report the reprogramming of multiple patient urine-derived cell lines with mRNA reprogramming, which, to date, is one of the fastest and most faithful reprogramming method. We show that mRNA reprogramming efficiently generates hiPSCs from urine-derived cells. Moreover, we were able to generate feeder-free bulk hiPSCs lines that did not display genomic abnormalities. Altogether, this reprogramming method will contribute to accelerating the translation of hiPSCs to therapeutic applications.
et al.. Synthesis and biological evaluation of 3-amino-, 3-alkoxy-and 3-aryloxy-6-(hetero)arylpyridazines as potent antitumor agents.ABSTRACT: Various 3-amino-, 3-aryloxy-and alkoxy-6-arylpyridazines have been synthesized by an electrochemical reductive cross-coupling between 3-amino-, 3-aryloxy-or 3-alkoxy-6-chloropyridazines and aryl or heteroaryl halides. In vitro antiproliferative activity of these products was evaluated against a representative panel of cancer cell lines (HuH7, CaCo-2, MDA-MB-231, HCT116, PC3, NCI-H727, HaCaT) and oncogenicity prevention of the more efficient derivatives was highlighted on human breast cancer cell line MDA-MB 468-Luc prior establishing their interaction with p44/42 and Akt-dependent signaling pathways.
BackgroundSevere asthma is a chronic lung disease characterised by inflammation, airway hyperresponsiveness (AHR) and airway remodelling. The molecular mechanisms underlying uncontrolled airway smooth muscle cell (aSMC) proliferation involved in pulmonary remodelling are still largely unknown. Small G proteins of the Rho family (RhoA, Rac1 and Cdc42) are key regulators of smooth muscle functions and we recently demonstrated that Rac1 is activated in aSMC from allergic mice. The objective of this study was to assess the role of Rac1 in severe asthma-associated airway remodelling.Methods and resultsImmunofluorescence analysis in human bronchial biopsies revealed an increased Rac1 activity in aSMC from patients with severe asthma compared with control subjects. Inhibition of Rac1 by EHT1864 showed that Rac1 signalling controlled human aSMC proliferation induced by mitogenic stimuli through the signal transducer and activator of transcription 3 (STAT3) signalling pathway. In vivo, specific deletion of Rac1 in SMC or pharmacological inhibition of Rac1 by nebulisation of NSC23766 prevented AHR and aSMC hyperplasia in a mouse model of severe asthma. Moreover, the Rac1 inhibitor prevented goblet cell hyperplasia and epithelial cell hypertrophy whereas treatment with corticosteroids had less effect. Nebulisation of NSC23766 also decreased eosinophil accumulation in the bronchoalveolar lavage of asthmatic mice.ConclusionThis study demonstrates that Rac1 is overactive in the airways of patients with severe asthma and is essential for aSMC proliferation. It also provides evidence that Rac1 is causally involved in AHR and airway remodelling. Rac1 may represent as an interesting target for treating both AHR and airway remodelling of patients with severe asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.