Rice diterpenoid phytoalexins such as momilactones and phytocassanes are produced in suspension-cultured rice cells treated with a chitin oligosaccharide elicitor and in rice leaves irradiated with UV light. The common substrate geranylgeranyl diphosphate is converted into diterpene hydrocarbon precursors via a two-step sequential cyclization and then into the bioactive phytoalexins via several oxidation steps. It has been suggested that microsomal cytochrome P-450 monooxygenases (P-450s) are involved in the downstream oxidation of the diterpene hydrocarbons leading to the phytoalexins and that a dehydrogenase is involved in momilactone biosynthesis. However, none of the enzymes involved in the downstream oxidation of the diterpene hydrocarbons have been identified. In this study, we found that a putative dehydrogenase gene (AK103462) and two functionally unknown P-450 genes (CYP99A2 and CYP99A3) form a chitin oligosaccharide elicitor-and UV-inducible gene cluster, together with OsKS4 and OsCyc1, the diterpene cyclase genes involved in momilactone biosynthesis. Functional analysis by heterologous expression in Escherichia coli followed by enzyme assays demonstrated that the AK103462 protein catalyzes the conversion of 3-hydroxy-9H-pimara-7,15-dien-19,6-olide into momilactone A. The double knockdown of CYP99A2 and CYP99A3 specifically suppressed the elicitor-inducible production of momilactones, strongly suggesting that CYP99A2, CYP99A3, or both are involved in momilactone biosynthesis. These results provide strong evidence for the presence on chromosome 4 of a gene cluster involved in momilactone biosynthesis.Plants that are attacked by pathogenic microorganisms respond with a variety of defense reactions. One such reaction is the production of secondary metabolites that serve as plant antibiotics, known as phytoalexins, which are generated through the perception of signal molecules called elicitors, which are mostly derived from pathogens. Fifteen phytoalexin compounds have been identified in suspension-cultured rice cells treated with biotic elicitors such as a chitin oligosaccharide or a cerebroside (1, 2) and/or from rice leaves that were either infected with the rice leaf blast pathogen Magnaporthe grisea or exposed to UV irradiation (3-10). With the exception of the flavonoid sakuranetin, all of these rice phytoalexins are diterpenoids. These compounds have been classified into four structurally distinct types of polycyclic diterpenoid phytoalexins based on the structures of their diterpene hydrocarbon precursors: phytocassanes A to E, oryzalexins A to F, momilactones A and B, and oryzalexin S. The common precursor geranylgeranyl diphosphate is cyclized to ent-copalyl diphosphate (ent-CDP) and then to ent-cassa-12,15-diene and ent-sandaracopimaradiene, leading to phytocassanes A to E and oryzalexins A to F, respectively. Geranylgeranyl diphosphate is also cyclized to syn-CDP and then to 9H-pimara-7,15-diene and stemar-13-ene, leading to momilactones A and B and oryzalexin S, respectively. The hypotheti...
Production of reactive oxygen intermediates (ROI) and a form of programmed cell death called hypersensitive response (HR) are often associated with disease resistance of plants. We have previously shown that the Rac homolog of rice, OsRac1, is a regulator of ROI production and cell death in rice. Here we show that the constitutively active OsRac1 (i) causes HR-like responses and greatly reduces disease lesions against a virulent race of the rice blast fungus; (ii) causes resistance against a virulent race of bacterial blight; and (iii) causes enhanced production of a phytoalexin and alters expression of defense-related genes. The dominant-negative OsRac1 suppresses elicitor-induced ROI production in transgenic cell cultures, and in plants suppresses the HR induced by the avirulent race of the fungus. Taken together, our findings strongly suggest that OsRac1 has a general role in disease resistance of rice.
Blast fungus-induced accumulations of major rice diterpene phytoalexins (PA), momilactones A and B, and phytocassanes A through E were studied, focusing on their biosynthesis and detoxification. In resistant rice, all PA started to accumulate at 2 days postinoculation (dpi), at which hypersensitive reaction (HR)-specific small lesions became visible and increased 500- to 1,000-fold at 4 dpi, while the accumulation was delayed and several times lower in susceptible rice. Expression of PA biosynthetic genes was transiently induced at 2 dpi only in resistant plants, while it was highly induced in both plants at 4 dpi. Fungal growth was severely suppressed in resistant plants by 2 dpi but considerably increased at 3 to 4 dpi in susceptible plants. Momilactone A treatment suppressed fungal growth in planta and in vitro, and the fungus detoxified the PA in vitro. These results indicate that HR-associated rapid PA biosynthesis induces severe restriction of fungus, allowing higher PA accumulation in resistant rice, while in susceptible rice, failure of PA accumulation at the early infection stage allows fungal growth. Detoxification of PA would be a tactic of fungus to invade the host plant, and prompt induction of PA biosynthesis upon HR would be a trait of resistant rice to restrict blast fungus.
SUMMARYPlants frequently possess operon-like gene clusters for specialized metabolism. Cultivated rice, Oryza sativa, produces antimicrobial diterpene phytoalexins represented by phytocassanes and momilactones, and the majority of their biosynthetic genes are clustered on chromosomes 2 and 4, respectively. These labdanerelated diterpene phytoalexins are biosynthesized from geranylgeranyl diphosphate via ent-copalyl diphosphate or syn-copalyl diphosphate. The two gene clusters consist of genes encoding diterpene synthases and chemical-modification enzymes including P450s. In contrast, genes for the biosynthesis of gibberellins, which are labdane-related phytohormones, are scattered throughout the rice genome similar to other plant genomes. The mechanism of operon-like gene cluster formation remains undefined despite previous studies in other plant species. Here we show an evolutionary insight into the rice gene clusters by a comparison with wild Oryza species. Comparative genomics and biochemical studies using wild rice species from the AA genome lineage, including Oryza barthii, Oryza glumaepatula, Oryza meridionalis and the progenitor of Asian cultivated rice Oryza rufipogon indicate that gene clustering for biosynthesis of momilactones and phytocassanes had already been accomplished before the domestication of rice. Similar studies using the species Oryza punctata from the BB genome lineage, the distant FF genome lineage species Oryza brachyantha and an outgroup species Leersia perrieri suggest that the phytocassane biosynthetic gene cluster was present in the common ancestor of the Oryza species despite the different locations, directions and numbers of their member genes. However, the momilactone biosynthetic gene cluster evolved within Oryza before the divergence of the BB genome via assembly of ancestral genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.