Foxp3 regulatory T (Treg) cells, which suppress immune responses, are highly proliferative in vivo. However, it remains unclear how the active replication of Treg cells is maintained in vivo. Here, we show that branched-chain amino acids (BCAAs), including isoleucine, are required for maintenance of the proliferative state of Treg cells via the amino acid transporter Slc3a2-dependent metabolic reprogramming. Mice fed BCAA-reduced diets showed decreased numbers of Foxp3 Treg cells with defective in vivo proliferative capacity. Mice lacking Slc3a2 specifically in Foxp3 Treg cells showed impaired in vivo replication and decreased numbers of Treg cells. Slc3a2-deficient Treg cells showed impaired isoleucine-induced activation of the mTORC1 pathway and an altered metabolic state. Slc3a2 mutant mice did not show an isoleucine-induced increase of Treg cells in vivo and exhibited multi-organ inflammation. Taken together, these findings demonstrate that BCAA controls Treg cell maintenance via Slc3a2-dependent metabolic regulation.
Some paramyxovirus V proteins induce STAT protein degradation, and the amino acids essential for this process in the human parainfluenza virus type 2 (hPIV2) V protein have been studied. Various recombinant hPIV2s and cell lines constitutively expressing various mutant V proteins were generated. We found that V proteins with replacement of Cys residues of the Cys cluster were still able to bind STATs but were unable to induce their degradation. The hPIV2 V protein binds STATs via a W-(X) 3 -W-(X) 9 -W Trp motif located just upstream of the Cys cluster. Replacements of two or more Trp residues in this motif resulted in a failure to form a V/STAT2 complex. We have also identified two Phe residues of the hPIV2 V protein that are essential for STAT degradation, namely, Phe207, lying within the Cys cluster, and Phe143, in the P/V common region of the protein. Interestingly, infection of BHK cells with hPIV2 led to the specific degradation of STAT1 and not STAT2. Other evidence for the cell species specificity of hPIV2-induced STAT degradation is presented. Finally, a V-minus hPIV2, which can express only the P protein from its P gene, was generated and partially characterized. In contrast to V-minus viruses of other paramyxovirus genera, this V-minus rubulavirus was highly debilitated, and its growth even in Vero cells was very limited. The structural rubulavirus V proteins, as expected, are thus clearly important in promoting virus growth, independent of their anti-interferon (IFN) activity. Interestingly, many of the residues that are essential for anti-IFN activity, e.g., the Cys of this cluster and Phe207 within this cluster, as well as the Trp of this motif, are also essential for promoting virus growth.The interferon (IFN) system is the first line of host defense against virus infection. Viruses of the Paramyxovirinae, similarly to other viruses, have evolved proteins that specifically inhibit IFN-induced innate antiviral responses, at least in part through direct inhibition of cellular STAT proteins that are responsible for IFN signal transduction. The V proteins encoded by the rubulaviruses simian virus 5 (SV5), SV41, and mumps virus (MuV) and by Newcastle disease virus (NDV, an avulavirus) block IFN signaling by targeting STAT1 for degradation (1,5,6,14,20,25,33,45,46,49,51), whereas the V protein of human parainfluenza virus type 2 (hPIV2, a rubulavirus) targets STAT2 for degradation (25,32). Moreover, the V proteins of measles virus (morbillivirus) and Nipah virus and Hendra virus (henipaviruses) have been shown to inhibit IFN signaling by preventing STAT1 and STAT2 nuclear accumulation (30,37,38,41). Sendai virus (SeV) and hPIV3 also block IFN signaling, and this anti-IFN ability has been shown to be a property of these respirovirus C proteins (7,8,10,11,17,19,42). In cells that are highly IFN competent, the Sendai virus C protein also induces the intracellular loss of STAT1 (9). The rubulavirus V protein-dependent degradation of STAT proteins involves degradation complexes that contain the V protein, STA...
Mechanisms of reduction of viral growth in MDCK cells by PVP-I involve blockade of viral attachment to cellular receptors and inhibition of viral release and spread from infected cells. Therefore, PVP-I is useful to prevent infection and limit spread of human and avian influenza viruses.
A full-length cDNA clone was constructed from the genome of the human parainfluenza type 2 virus (hPIV2). First, Vero cells were infected with recombinant vaccinia virus expressing T7 RNA polymerase, and then the plasmid encoding the antigenome sequence was transfected into Vero cells together with polymerase unit plasmids, NP, P, and L, which were under control of the T7 polymerase promoter. Subsequently, the transfected cells were cocultured with fresh Vero cells. Rescue of recombinant hPIV2 (rPIV2) from cDNA clone was demonstrated by finding the introduced genetic tag. As an application of reverse genetics, we introduced one nucleotide change (UCU to ACU) to immediate downstream of the RNA-editing site of the V gene in the full-length hPIV2 cDNA and were able to obtain infectious viruses [rPIV2V(-)] from the cDNA. The rPIV2V(-) possessed a defective V protein that did not have the unique cysteine-rich domain in its carboxyl terminus (the V-protein-specific domain). The rPIV2V(-) showed no growth in CV-1 and FL cells. Replication of the rPIV2V(-) in these cells, however, was partially recovered by adding anti-interferon (IFN)-beta antibody into the culture medium, showing that the rPIV2V(-) is highly sensitive against IFN and that no growth of rPIV2V(-) in CV-1 and FL cells is mainly due to its hypersensitivity to endogenously produced IFN. These findings indicate that the V-protein-specific domain of hPIV2 is related to IFN resistance. On the other hand, the rPIV2V(-) efficiently replicated in Vero cells, which are known as a IFN-non-producers. However, the virus yields of rPIV2V(-) in Vero cells were 10- to100-fold lower than those of control rPIV2, although syntheses of the viral-specific proteins and their mRNAs in rPIV2V(-)-infected Vero cells were augmented up to 48 p.i. in comparison with those of rPIV2. Furthermore, the rPIV2V(-) virions showed anomalous in size as compared with rPIV2 virions. These results suggest that the V protein plays an important role in the hPIV2 assembly, maturation, and morphogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.