The proctodeum of the Drosophila embryo originates from the posterior end of the blastoderm and forms the hindgut. By enhancer-trap mutagenesis, using a P-element-lacZ vector, we identified a mutation that caused degeneration of the proctodeum during shortening of the germ band and named it aproctous (apro). Expression of the lacZ reporter gene, which was assumed to represent expression of the apro gene, began at the cellular blastoderm stage in a ring that encompassed about 10-15% of the egg's length (EL) and included the future proctodeum, anal pads, and posterior-most part of the visceral mesoderm. In later stages, strong expression of lacZ was detected in the developing hindgut and anal pads. Expression continued in the anal pads and epithelium of the hindgut of larvae; the epithelium of the hindgut of the adult fly also expressed lacZ. The spatial patterns of the expression of lacZ in various mutants suggested that the embryonic expression of apro was regulated predominantly by two gap genes, tailless (tll) and huckebein (hkb): tll is necessary for the activation of apro, while hkb suppressed the expression of apro in the region posterior to 10% EL. Cloning and sequencing of the apro cDNA revealed that apro was identical to the T-related gene (Trg) that is a Drosophila homolog of the vertebrate Brachyury gene. apro appears to play a key role in the development of tissues derived from the proctodeum.
It is well discussed about biological effect to high-level radioactive waste (HLW) disposal and known that the biofilm is considered to be the uncertain factor to estimate for migration of radioactive elements. The objective of this research is to estimate the microbial effect of Cs migration in groundwater interacted with rock surface. Specially, we focus on Cs behavior at the rock surface surrounded by biofilm. The most important factor is the Cs sorption and diffusion to the microbe and/or their biofilm. Generation of bio-colloid absorbed with Cs and retardation of Cs by their matrix diffusion in rock will be influenced by these phenomena. We introduce about scenario analysis for biofilm and a simple Cs diffusion test with and without sulfur reducing bacteria (SRB) which is well known as easy to produce biofilm on the rock surface in order to clarify the existence effect of the bacteria at the rock surface. The Cs diffusion experiment, using Desulfovivrio desullfuricans as SRB, indicated that microbial effect was less to through their biofilm in the experimental condition. We consider that Cs is easy to contact the rock surface even if surrounded biofilm and not effect to retardation by matrix diffusion scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.