Forest carbon stocks-both in terms of the standing biomass and the soil organic carbon (OC)-were monitored in the mangrove plantation reforested from an abandoned shrimp pond for the 10 years following land excavation. Excavation to a level of 25 cm below the existing ground level increased the inundation time of tidal water from 463 to 7,597 hours per year, resulting in a significant increase of survival/growth rates for planted mangrove species, Rhizophora mucronata (RM) and Bruguiera cylindrica (BC), and of carbon stocks as well. RM showed high rates of standing biomass accumulation with 98.7 ton/ha while 28.8 ton/ha for BC was measured over 10 years in the excavated area. In contrast, the unexcavated area showed low rates of biomass accumulation, 1.04 ton/ha for RM and 0.53 ton/ha for BC in the same period. The excavated area recorded a twofold increase of soil OC in the upper 5 cm of the surface soil from 71.8 to 154.8 ton/ha in 10 years, however it decreased to 68.3 ton/ha in the unexcavated area where soil OC is susceptible to decomposition. These results imply that the potential of carbon sinks in reforested land from abandoned areas cannot be developed unless hydraulic conditions are properly recovered. The fast growing species Avicennia marina (AM) grew quickly for the first two years after colonization but its growth slowed down afterwards, showing a limited ability of carbon capture.
The study site is currently retreating at a rate of 20 m y−1due to severe coastal erosion and found to be highly polluted as revealed from the water, sediment and biological analysis. In an attempt to prevent coastal erosion, 14,000Rhizophora mucronata(RM) trees were planted across a heavily eroded shoreline at Samut Sakhon, Thailand. The survival rate of RM was high at the landward area and decreased at the offshore area. The most landward plot showed the highest survival rate when measured 4 years after planting (63.5%), while only 26.7% of trees survived at the most offshore plot. NPK and coconut fiber were shown to be significantly effective to enhance initial tree growths in heavily eroded area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.