Low doses (2.5-15 cGy) of X-irradiation two months prior to a second exposure to a sublethal dose enhanced the survival rate in mice. Optimal and significant increase was observed with 5-10 cGy. Endogenous spleen colony counts (endo-CFUs) after 7 Gy increased by a factor of about 1.7 in mice pre-irradiated with 5-10 cGy, while the number of blood forming stem cells (CFUs) in the pre-irradiated group did not exceed that in the sham-irradiated control group at the period of the second exposure (two months after irradiation with 5 cGy). The low dose exposure seems to stimulate recovery of blood forming stem cells after the second irradiation and favors a decrease in the incidence of bone marrow death.
In the 1970s and 1980s, Planel et al. reported that the growth of paramecia was decreased by shielding them from background radiation. In the 1990s, Takizawa et al. found that mouse cells displayed a decreased growth rate under shielded conditions. The purpose of the present study was to confirm that growth is impaired in organisms that have been shielded from background radiation. Radioprotection was produced with a shielding chamber surrounded by a 15 cm thick iron wall and a 10 cm thick paraffin wall that reduced the γ ray and neutron levels in the chamber to 2% and 25% of the background levels, respectively. Although the growth of Paramecium tetraurelia was not impaired by short-term radioprotection (around 10 days), which disagreed with the findings of Planel et al., decreased growth was observed after long-term (40-50 days) radiation shielding. When mouse lymphoma L5178Y cells were incubated inside or outside of the shielding chamber for 7 days, the number of cells present on the 6th and 7th days under the shielding conditions was significantly lower than that present under the non-shielding conditions. These inhibitory effects on cell growth were abrogated by the addition of a ¹³⁷Cs γ-ray source disk to the chamber. Furthermore, no growth retardation was observed in XRCC4-deficient mouse M10 cells, which display impaired DNA double strand break repair.
Chronic pre-irradiation at a low dose-rate suppressed Bax-mediated apoptosis. These findings suggest that the radioadaptive response in mouse spleen may be due to a suppression of p53-mediated apoptosis.
Radio-adaptive responses at a conditioning X-ray dose of 0.45 Gy and a challenging dose of 5.0 Gy on hematopoietic indices were studied in C57BL mice with p53 (Trp53) wild, heterogenous and knockout allele. The conditioning irradiation, given 2 weeks before the challenging irradiation, induced radio-adaptive responses observed as a recovery of the peripheral blood-cell counts of leukocytes, thrombocytes and erythrocytes on day 14 after challenging irradiation in C57BL mice of the wild-type p53(+/+). The pre-irradiation also increased the endogenous spleen colonies (endo-CFU-S) on day 12 and the spleen weight on day 14. On the contrary, the knockout p53(-/-) mice gave no such radio-adaptive response. The heterogenous p53(+/-) mice gave an intermediate response. The radio-adaptive response in hematopoiesis at a challenge dose of 5.0 Gy seems to be a p53-dependent phenomenon. The possible role of induction in radio-resistance through the reduction of p53-drived apoptosis in hematopoietic stem cells in pre-irradiated mice is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.