With cities reinforcing greener ways of urban mobility, encouraging urban cycling helps to reduce the number of motorized vehicles on the streets. However, that also leads to a significant increase in the number of bicycles in urban areas, making the question of planning the cycling infrastructure an important topic. In this paper, we introduce a new method for analyzing the demand for bicycle parking facilities in urban areas based on object detection of social media images. We use a subset of the YFCC100m dataset, a collection of posts from the social media platform Flickr, and utilize a state-of-the-art object detection algorithm to detect and classify moving and parked bicycles in the city of Dresden, Germany. We were able to retrieve the vast majority of bicycles while generating few false positives and classify them as either moving or stationary. We then conducted a case study in which we compare areas with a high density of parked bicycles with the number of currently available parking spots in the same areas and identify potential locations where new bicycle parking facilities can be introduced. With the results of the case study, we show that our approach is a useful additional data source for urban bicycle infrastructure planning because it provides information that is otherwise hard to obtain.
Point datasets that relate to highly populated places, such as ones retrieved from social media or volunteered geographic information in general, can often result in dense point clusters when presented on maps. Therefore, it can be useful to visualize the relevant point density information directly on the urban geometry to tackle the problem of point counting and density range identification in highly cluttered areas. One solution is to relate each point to the nearest geometry object. While this is a straightforward approach, its major drawback is that local point clusters could disappear by assigning them to larger objects, e.g., long roads. To address this issue, we introduce two new point density visualization approaches by which points are related to the underlying geometry objects. In this process, we use grid cells and heatmap contour lines to divide roads, squares, and pedestrian zones into subgeometry units. Comparison of our visualization approaches with conventional density visualization methods shows that our approaches provide a more comprehensive insight into the point distribution over space, i.e., over existing urban geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.