Divide-and-conquer algorithms are suitable for modern parallel machines, tending to have large amounts of inherent parallelism and working well with caches and deep memory hierarchies. Among others, list homomorphisms are a class of recursive functions on lists, which match very well with the divide-and-conquer paradigm. However, direct programming with list homomorphisms is a challenge for many programmers. In this paper, we propose and implement a novel system that can automatically derive costoptimal list homomorphisms from a pair of sequential programs, based on the third homomorphism theorem. Our idea is to reduce extraction of list homomorphisms to derivation of weak right inverses. We show that a weak right inverse always exists and can be automatically generated from a wide class of sequential programs. We demonstrate our system with several nontrivial examples, including the maximum prefix sum problem, the prefix sum computation, the maximum segment sum problem, and the line-ofsight problem. The experimental results show practical efficiency of our automatic parallelization algorithm and good speedups of the generated parallel programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.