We describe an engineered photoactivatable Cas9 (paCas9) that enables optogenetic control of CRISPR-Cas9 genome editing in human cells. paCas9 consists of split Cas9 fragments and photoinducible dimerization domains named Magnets. In response to blue light irradiation, paCas9 expressed in human embryonic kidney 293T cells induces targeted genome sequence modifications through both nonhomologous end joining and homology-directed repair pathways. Genome editing activity can be switched off simply by extinguishing the light. We also demonstrate activation of paCas9 in spatial patterns determined by the sites of irradiation. Optogenetic control of targeted genome editing should facilitate improved understanding of complex gene networks and could prove useful in biomedical applications.
Optogenetic methods take advantage of photoswitches to control the activity of cellular proteins. Here, we completed a multi-directional engineering of the fungal photoreceptor Vivid to develop pairs of distinct photoswitches named Magnets. These new photoswitches were engineered to recognize each other based on the electrostatic interactions, thus preventing homodimerization and enhancing light-induced heterodimerization. Furthermore, we tuned the switch-off kinetics by four orders of magnitude and developed several variants, including those with substantially faster kinetics than any of the other conventional dimerization-based blue spectrum photoswitches. We demonstrate the utility of Magnets as powerful tools that can optogenetically manipulate molecular processes in biological systems.
Targeted endogenous gene activation is necessary for understanding complex gene networks and has great potential in medical and industrial applications. The CRISPR-Cas system offers simple and powerful tools for this purpose. However, these CRISPR-Cas-based tools for activating user-defined genes are unable to offer precise temporal control of gene expression, despite the fact that many biological phenomena are regulated by highly dynamic patterns of gene expression. Here we created a light-inducible, user-defined, endogenous gene activation system based on CRISPR-Cas9. We demonstrated that this CRISPR-Cas9-based transcription system can allow rapid and reversible targeted gene activation by light. In addition, using this system, we have exemplified photoactivation of multiple user-defined endogenous genes in mammalian cells. The present CRISPR-Cas9-based transcription system offers simple and versatile approaches for precise endogenous gene activation in basic biological research and biotechnology applications.
We developed genetically encoded RNA probes for characterizing localization and dynamics of mitochondrial RNA (mtRNA) in single living cells. The probes consist of two RNA-binding domains of PUMILIO1, each connected with split fragments of a fluorescent protein capable of reconstituting upon binding to a target RNA. We designed the probes to specifically recognize a 16-base sequence of mtRNA encoding NADH dehydrogenase subunit 6 (ND6) and to be targeted into the mitochondrial matrix, which allowed real-time imaging of ND6 mtRNA localization in living cells. We showed that ND6 mtRNA is localized within mitochondria and concentrated particularly on mitochondrial DNA (mtDNA). Movement of the ND6 mtRNA is restricted but oxidative stress induces the mtRNA to disperse in the mitochondria and gradually decompose. These probes provide a means to study spatial and temporal mRNA dynamics in intracellular compartments in living mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.