Calcifications in the basal ganglia are a common incidental finding and are sometimes inherited as an autosomal dominant trait (idiopathic basal ganglia calcification (IBGC)). Recently, mutations in the PDGFRB gene coding for the platelet-derived growth factor receptor β (PDGF-Rβ) were linked to IBGC. Here we identify six families of different ancestry with nonsense and missense mutations in the gene encoding PDGF-B, the main ligand for PDGF-Rβ. We also show that mice carrying hypomorphic Pdgfb alleles develop brain calcifications that show age-related expansion. The occurrence of these calcium depositions depends on the loss of endothelial PDGF-B and correlates with the degree of pericyte and blood-brain barrier deficiency. Thus, our data present a clear link between Pdgfb mutations and brain calcifications in mice, as well as between PDGFB mutations and IBGC in humans.
Tumor ablation by thermal energy via the irradiation of plasmonic nanoparticles is a relatively new oncology treatment. Hybrid plasmonic‐superparamagnetic nanoaggregates (50–100 nm in diameter) consisting of SiO2‐coated Fe2O3 and Au (≈30 nm) nanoparticles were fabricated using scalable flame aerosol technology. By finely tuning the Au interparticle distance using the SiO2 film thickness (or content), the plasmonic coupling of Au nanoparticles can be finely controlled bringing their optical absorption to the near‐IR that is most important for human tissue transmittance. The SiO2 shell facilitates also dispersion and prevents the reshaping or coalescence of Au particles during laser irradiation, thereby allowing their use in multiple treatments. These nanoaggregates have magnetic resonance imaging (MRI) capability as shown by measuring their r2 relaxivity while their effectiveness as photothermal agents is demonstrated by killing human breast cancer cells with a short, four minute near‐IR laser irradiation (785 nm) at low flux (4.9 W cm‐2).
Despite there being an increasing number of installations of ultra high field MR systems (> 3 T) in clinical environments, no functional patient investigations have yet examined possible benefits for functional diagnostics. Here we performed presurgical localization of the primary motor hand area on 3 T and 7 T Siemens scanners with identical investigational procedures and comparable system specific sequence optimizations. Results from 17 patients showed significantly higher functional sensitivity of the 7 T system measured via percent signal change, mean t-values, number of suprathreshold voxels and contrast to noise ratio. On the other hand, 7 T data suffered from a significant increase of artifacts (ghosting, head motion). We conclude that ultra high field systems provide a clinically relevant increase of functional sensitivity for patient investigations.
IVIM parameters strongly depend upon the choice of the b-value threshold used for computation. The proposed algorithm may be used as a robust approach for IVIM analysis without organ-specific adaptation.
The most commonly applied model for the description of diffusion-weighted imaging (DWI) data in perfused organs is bicompartmental intravoxel incoherent motion (IVIM) analysis. In this study, we assessed the ground truth of underlying diffusion components in healthy abdominal organs using an extensive DWI protocol and subsequent computation of apparent diffusion coefficient 'spectra', similar to the computation of previously described T 2 relaxation spectra. Diffusion datasets of eight healthy subjects were acquired in a 3-T magnetic resonance scanner using 68 different b values during free breathing (equidistantly placed in the range 0-1005 s/mm 2 ). Signal intensity curves as a function of the b value were analyzed in liver, spleen and kidneys using nonnegative least-squares fitting to a distribution of decaying exponential functions with minimum amplitude energy regularization. In all assessed organs, the typical slow-and fast-diffusing com- In the first description of spin echoes in magnetic resonance (MR), it was noted that the observed echo amplitudes were not only determined by the relaxation times T 1 and T 2 , but also by diffusion. 1 In addition to the unwanted possible effect of diffusion on the measurement of relaxation times, the possibility of measurements of diffusion coefficients was also noted and experimentally realized shortly thereafter. 2 However, it was not until the mid-1980s that diffusion-weighted imaging (DWI) was developed and applied in vivo for the first time. 3 Since then, several models for diffusion in perfused biological tissues have been proposed, with intravoxel incoherent motion (IVIM) being the most established at present.In this model, a slow-decaying component, as a result of passive diffusion in the tissue, and a fast-decaying component, as a result of perfusion,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.